CAPN1 (Calpain1)-Mediated Impairment of Autophagic Flux Contributes to Cerebral Ischemia-Induced Neuronal Damage

Author:

Liu Yueyang123ORCID,Che Xiaohang123ORCID,Zhang Haotian123,Fu Xiaoxiao123,Yao Yang123,Luo Jun123,Yang Yu123,Cai Ruiping123,Yu Xiangnan123,Yang Jingyu123ORCID,Zhou Ming-Sheng123ORCID

Affiliation:

1. Department of Physiology, Shenyang Medical College, China (Y.L., Y. Yao, Y. Yang, R.C., M.-S.Z.).

2. Department of Pharmacology, Shenyang Pharmaceutical University, China (Y.L., X.C., H.Z., X.F., X.Y., J.Y.).

3. Department of Cardiology, The Affiliated Ganzhou Hospital of Nanchang University, China (J.L.).

Abstract

Background and Purpose: CAPN1 (calpain1)—an intracellular Ca 2+ -regulated cysteine protease—can be activated under cerebral ischemia. However, the mechanisms by which CAPN1 activation promotes cerebral ischemic injury are not defined. Methods: In the present study, we used adeno-associated virus-mediated genetic knockdown and pharmacological blockade (MDL-28170) of CAPN1 to investigate the role of CAPN1 in the regulation of the autophagy-lysosomal pathway and neuronal damage in 2 models, rat permanent middle cerebral occlusion in vivo model and oxygen-glucose–deprived primary neuron in vitro model. Results: CAPN1 was activated in the cortex of permanent middle cerebral occlusion–operated rats and oxygen-glucose deprivation–exposed neurons. Genetic and pharmacological inhibition of CAPN1 significantly attenuated ischemia-induced lysosomal membrane permeabilization and subsequent accumulation of autophagic substrates in vivo and in vitro. Moreover, inhibition of CAPN1 increased autophagosome formation by decreasing the cleavage of the autophagy regulators BECN1 (Beclin1) and ATG (autophagy-related gene) 5. Importantly, the neuron-protective effect of MDL-28170 on ischemic insult was reversed by cotreatment with either class III-PI3K (phosphatidylinositol 3-kinase) inhibitor 3-methyladenine or lysosomal inhibitor chloroquine (chloroquine), suggesting that CAPN1 activation-mediated impairment of autophagic flux is crucial for cerebral ischemia-induced neuronal damage. Conclusions: The present study demonstrates for the first time that ischemia-induced CAPN1 activation impairs lysosomal function and suppresses autophagosome formation, which contribute to the accumulation of substrates and aggravate the ischemia-induced neuronal cell damage. Our work highlights the vital role of CAPN1 in the regulation of cerebral ischemia–mediated autophagy-lysosomal pathway defects and neuronal damage.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3