Endothelial Conditional Knockdown of NMMHC IIA (Nonmuscle Myosin Heavy Chain IIA) Attenuates Blood-Brain Barrier Damage During Ischemia-Reperfusion Injury

Author:

Gong Shuaishuai1ORCID,Cao Guosheng12ORCID,Li Fang1ORCID,Chen Zhuo1ORCID,Pan Xuewei1ORCID,Ma Huifen1ORCID,Zhang Yuanyuan1ORCID,Yu Boyang1ORCID,Kou Junping1ORCID

Affiliation:

1. State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medical, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, PR China (S.G., G.C., F.L., Z.C., X.P., H.M., Y.Z., B.Y., J.K.).

2. College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, PR China (G.C.).

Abstract

Background and Purpose: In ischemic stroke, breakdown of the blood-brain barrier (BBB) aggravates brain damage. Endothelial detachment contributes to BBB disruption and neurovascular dysfunction, but its regulation in stroke has yet to be clarified. We investigated the function of NMMHC IIA (nonmuscle myosin heavy chain IIA) in the endothelium on BBB breakdown and its potential mechanisms. Methods: Endothelial conditional knockdown NMMHC IIA ( Myh9 ECKD ) was constructed in vivo and in vitro, and its role was explored in middle cerebral artery occlusion/reperfusion–injured mice and oxygen-glucose deprivation/reoxygenation–injured brain microvascular endothelial cells. The degree of brain injury was analyzed using staining (2,3,5-triphenyltetrazolium chloride, hematoxylin, and eosin) and electron microscopy. BBB breakdown was investigated with leakage of Evans Blue dye and expression of TJs (tight junctions) and MMP (matrix metallopeptidase)-2/9. Transcriptomics for enrichment analysis was adopted to explore the potential downstream signaling pathways of NMMHC IIA involved in middle cerebral artery occlusion/reperfusion–induced BBB dysfunction. Results: NMMHC IIA expression was upregulated in endothelial cells after cerebral ischemia/reperfusion injury. Myh9 ECKD mice exhibited improvement in endothelial barrier hyperpermeability and TJs integrity stimulated by cerebral ischemia/reperfusion. Blebbistatin (NMMHC II inhibitor) treatment exerted the same effect. Transcriptomics showed that NMMHC IIA was involved in regulating various BBB-related genomic changes in the middle cerebral artery occlusion/reperfusion model, and NMMHC IIA was confirmed to significantly modulate Hippo and peroxisome proliferator-activated receptor gamma/nuclear factor-kappa B signaling pathways, which are closely related to BBB damage. Conclusions: Our findings provide some new insights into how NMMHC IIA contributes to maintaining the integrity of the cerebral endothelial barrier. NMMHC IIA could be a potential therapeutic target for ischemic stroke.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3