Reperfusion-induced injury to the blood-brain barrier after middle cerebral artery occlusion in rats.

Author:

Yang G Y1,Betz A L1

Affiliation:

1. Department of Surgery (Neurosurgery), University of Michigan Medical Center, Ann Arbor 48109-0532.

Abstract

The integrity of the blood-brain barrier may play an important pathophysiological role during postischemic reperfusion. To determine the factors that lead to exacerbation of brain injury by reperfusion, we investigated changes in cerebral blood flow, blood-brain barrier permeability, edema formation, and infarction in permanent or temporary middle cerebral artery occlusion in rats and studied the relation between local cerebral blood flow and blood-brain barrier disruption. Middle cerebral artery occlusion was performed with the rat suture model, allowing either permanent (6 hours) or temporary occlusion (3 hours of occlusion and 3 hours of reperfusion). We measured brain water, ion contents, and infarct volumes and determined cerebral blood flow using laser Doppler flowmetry and blood-brain barrier permeability with [3H] alpha-aminoisobutyric acid. During occlusion, cerebral blood flow was reduced to 7% to 15% (permanent) and 10% to 17% (temporary) of the baseline. During 3 hours of reperfusion, it returned to 47% to 80% (lateral cortex) and 78% to 98% (medial cortex) of the baseline. Compared with the contralateral hemisphere, the water content in the ischemic area increased in both permanent and temporary groups (P < .05, P < .01). Both infarct volume and blood-brain barrier disruption were greater in the reperfusion group compared with the permanent occlusion group (P < .05). Blood-brain barrier disruption correlated with cerebral blood flow during reperfusion (P < .05). These findings demonstrate that brain infarct and blood-brain barrier disruption are exacerbated after reperfusion in this model of focal ischemia. Blood-brain barrier disruption may relate to the degree of cerebral blood flow recovery. Thus, although early reperfusion in focal ischemia may preserve penumbra tissue, late reperfusion may increase the tissue injury.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Clinical Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3