Harmonic Imaging of the Vertebrobasilar System

Author:

Seidel G.1,Kaps M.1

Affiliation:

1. From the Department of Neurology, Lübeck (Germany) Medical University.

Abstract

Background and Purpose Gas bubbles of ultrasound contrast agents resonate at frequencies used for diagnostic ultrasound and produce harmonics or multiples of the transmitted frequency. Processing of the second harmonic frequency results in a reduction of the signal-to-noise ratio and the signal-to-tissue artifacts. This study is the first to evaluate second harmonic imaging in the cerebral circulation. Methods We used a duplex system (HP SONOS 2500) in connection with a 1.8/3.6-MHz (second harmonic) and a 2.5-MHz (conventional) sector transducer. Levovist (6.5 mL; 400 mg/mL) was injected intravenously for second harmonic and conventional color duplex imaging in 13 healthy volunteers (age range, 23 to 34 [median, 29] years). Results When second harmonic imaging was compared with conventional color duplex imaging, more cerebellar arteries were detected (35 versus 31), the duration of blooming artifact was significantly reduced (7.9 versus 29.9 seconds; P =.03), and the duration of diagnostically useful signal enhancement was increased (248.5 versus 117.4 seconds; P =.0003), but the maximal investigation depth was reduced (8.4 versus 9.3 cm; P =.001). When conventional and second harmonic duplex were compared, there was a significant ( P <.04) difference in the systolic blood flow velocity in the vertebral and basilar arteries. Conclusions Second harmonic color duplex imaging in the vertebrobasilar system increases the time of diagnostic useful signal enhancement and produces a better spatial resolution compared with conventional color duplex imaging.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Clinical Neurology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3