Chronic Cerebral Hypoperfusion Inhibits Calcium-Induced Long-term Potentiation in Rats

Author:

Sekhon Lali H. S.1,Spence Ian1,Morgan Michael K.1,Weber Neville C.1

Affiliation:

1. From the Departments of Surgery (L.H.S.S., M.K.M) and Pharmacology (I.S.) and the School of Mathematics and Statistics (N.C.W.), University of Sydney (Australia).

Abstract

Background and Purpose Long-term potentiation (LTP) in the rat hippocampus induced by tetanic stimulation is impaired by chronic cerebral hypoperfusion. The effects of chronic cerebral hypoperfusion on other forms of LTP are unknown. Such data could help delineate the pathways of cellular alteration caused by chronic cerebral hypoperfusion. The in vitro phenomenon of calcium-induced LTP was thus examined in rat hippocampal CA1 cells that had undergone chronic hypoperfusion with a reduction in cerebral blood flow of between 25% and 50% maintained for 26 weeks. Methods Ten Sprague-Dawley rats had a cervical arteriovenous fistula surgically constructed, and an additional 10 animals were used as age-matched controls. Hippocampal slices were prepared after 26 weeks of hypoperfusion, and in vitro extracellular field potential recordings were taken from the Schäffer collateral CA1 region. Properties of LTP induced through transient exposure to a hypercalcemic solution were analyzed. Results LTP was impaired in animals with an arteriovenous fistula ( P <.05). Control animals demonstrated potentiation lasting for the entire 2 hours of recording, whereas fistula animals showed only transient potentiation (<60 minutes) before returning to baseline values. Conclusions Calcium-induced LTP is impaired by chronic cerebral hypoperfusion. This form of LTP is different from that induced by tetanic stimulation. It is the most sensitive test available for in vitro detection of the changes induced in neuronal function by chronic noninfarctional reductions in cerebral blood flow of 25% to 50% and may indicate that the most basic cellular parameters involving calcium homeostasis and metabolism are being altered. The precise mechanisms remain to be elucidated, and several postulates are discussed.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3