Molecular Characterization of an Arachidonic Acid Epoxygenase in Rat Brain Astrocytes

Author:

Alkayed Nabil J.1,Narayanan Jayashree1,Gebremedhin Debebe1,Medhora Meetha1,Roman Richard J.1,Harder David R.1

Affiliation:

1. From the Cardiovascular Research Center, Department of Physiology, Medical College of Wisconsin, Milwaukee, and the Clement J. Zablocki Veterans Affairs Medical Center.

Abstract

Background and Purpose Brain parenchymal tissue metabolizes arachidonic acid (AA) via the cytochrome P450 (P450) epoxygenase to epoxyeicosatrienoic acids (EETs). EETs dilate cerebral arterioles and enhance K + current in vascular smooth muscle cells from large cerebral arteries. Because of the close association between astrocytes and the cerebral microcirculation, we hypothesized that brain epoxygenase activity originates from astrocytes. This study was designed to identify and localize an AA epoxygenase in rat brain astrocytes. We also tested the effect of EETs on whole-cell K + current in rat cerebral microvascular smooth muscle cells. Methods A functional assay was used to demonstrate endogenous epoxygenase activity of intact astrocytes in culture. Oligonucleotide primers derived from the sequence of a known hepatic epoxygenase, P450 2C11, were used in reverse transcription/polymerase chain reaction of RNA isolated from cultured rat astrocytes. The appropriate size reverse transcription/polymerase chain reaction product was cloned into a plasmid vector and sequenced. A polyclonal peptide antibody was raised against P450 2C11 and used in Western blotting and immunocytochemical staining of cultured astrocytes. A voltage-clamp technique was used to test the effect of EETs on whole-cell K + current recorded from rat cerebral microvascular muscle cells. Results Based on elution time of known standards and inhibition by miconazole, an inhibitor of P450 AA epoxygenase, cultured astrocytes produce 11,12- and 14,15-EETs when incubated with AA. The sequence of a cDNA derived from RNA isolated from cultured rat astrocytes was 100% identical to P450 2C11. Immunoreactivity to glial fibrillary acidic protein, a marker for astrocytes, colocalized with 2C11 immunoreactivity in double immunochemical staining of cultured astrocytes. EETs enhanced outward K + current in muscle cells from rat brain microvessels. Conclusions Our results demonstrate that a P450 2C11 mRNA is expressed in astrocytes and may be responsible for astrocyte epoxygenase activity. Given the vasodilatory effect of EETs, our findings suggest a role for astrocytes in the control of cerebral microcirculation mediated by P450 2C11-catalyzed conversion of AA to EETs. The mechanism of EET-induced dilation of rat cerebral microvessels may involve activation of K + channels.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Clinical Neurology

Cited by 175 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3