Diffusion nuclear magnetic resonance imaging in experimental stroke. Correlation with cerebral metabolites.

Author:

Back T1,Hoehn-Berlage M1,Kohno K1,Hossmann K A1

Affiliation:

1. Max-Planck-Institute for Neurological Research, Department of Experimental Neurology, Cologne, Germany.

Abstract

Diffusion-weighted nuclear magnetic resonance imaging has been shown to detect early ischemia-related alterations in experimental stroke. This raises the question of whether the observed increase in signal intensity is correlated with changes in cerebral metabolism. After middle cerebral artery occlusion, nuclear magnetic resonance diffusion images were recorded and compared with the regional concentration of cerebral metabolites and with histology of identical planes. Seven anesthetized Fischer rats were subjected to permanent occlusion of the middle cerebral artery. T1, T2, and diffusion images (b factors ranging from 0 to 1500 s/mm2) were measured in three to five planes after 7 hours. Thereafter, brains were frozen in situ for histology and quantitative bioluminescence imaging of ATP, glucose, lactate, and for fluorescence imaging of tissue pH. Seven hours after middle cerebral artery occlusion, the apparent diffusion coefficient was reduced from 615 +/- 97 x 10(-6).mm2.s-1 (contralateral brain) to 359 +/- 42 x 10(-6).mm2.s-1 (ischemic brain; mean +/- SD, P < .01). A precise topical coincidence was demonstrated between changes in nuclear magnetic resonance diffusion images, pattern of histological damage, ATP-depleted areas, and local tissue acidosis, the lesion area amounting to between 24.1% and 27.6% of the hemisphere at the level of the caudate-putamen. The area of elevated brain lactate clearly exceeded the acidic core of the infarct and included the slightly alkaline border zone. The data demonstrate that after 7-hour middle cerebral artery occlusion, the reduction of the apparent diffusion coefficient in nuclear magnetic resonance diffusion images reflects precisely the region of histological injury, breakdown of energy metabolism, and tissue acidosis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

Cited by 158 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3