Alterations in Glia and Axons in the Brains of Binswanger’s Disease Patients

Author:

Akiguchi Ichiro1,Tomimoto Hidekazu1,Suenaga Toshihiko1,Wakita Hideaki1,Budka Herbert1

Affiliation:

1. From the Department of Neurology, Faculty of Medicine, Kyoto University, Kyoto 606 Japan (I.A., H.T., T.S., H.W.), and the Institute of Neurology, University of Vienna, A-1097 Wien, Austria (H.B.).

Abstract

Background and Purpose Although increasing attention is being paid to Binswanger’s disease, a form of vascular dementia characterized by diffuse white matter lesions, only limited information is available on the pathological changes that occur in the glia and axons in the white matter. We therefore investigated the brains of patients with Binswanger’s disease to gain further insight into its pathophysiology. Methods Autopsied brains from patients with Binswanger’s disease (group 3; n=17) were compared with those of non-neurological controls (group 1; n=5) and controls with large cortical infarcts but without significant white matter lesions (group 2; n=5). Glial fibrillary acidic protein (GFAP) was used as an immunohistochemical marker for astroglia, leukocyte common antigen (LCA) was used as a marker for microglia, and HLA-DR was used as a marker for activated microglia. Axonal damage was assessed by the accumulation of proteins, which are transported by fast axonal flow, amyloid protein precursor (APP), synaptophysin, and chromogranin A. Results Although there was no difference in numerical density of GFAP-immunoreactive astroglia in each group, regressive astroglia were observed in 7 of 17 patients with Binswanger’s disease. LCA-immunoreactive microglia were 1.7 times more numerous in Binswanger’s disease than in group 1 ( P <.05). HLA-DR–immunoreactive–activated microglia were 3.4 times and 2.1 times more numerous in Binswanger’s disease as compared with group 1 ( P <.01) and group 2 ( P <.05), respectively. There was frequent perivascular lymphocyte cuffing, and clusters of macrophages with a decreased number of oligodendroglia were observed in the rarefied white matter. The grading scores for the number of axons immunoreactive for either APP, synaptophysin, or chromogranin A were significantly higher in Binswanger’s disease than in group 1 or 2. Conclusions The pathological alterations in Binswanger’s diseased brains include regressive changes in the astroglia and activation of the microglia with a decrease in the oligodendroglia, which were associated with the degradation of both myelin and axonal components. These results indicate that an inflammatory reaction and compromised axonal transport, mediated by chronic ischemia, may play an important role in the pathophysiology of Binswanger’s disease.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Clinical Neurology

Cited by 114 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3