Senescent Vascular Smooth Muscle Cells Drive Inflammation Through an Interleukin-1α–Dependent Senescence-Associated Secretory Phenotype

Author:

Gardner Sarah E.1,Humphry Melanie1,Bennett Martin R.1,Clarke Murray C.H.1

Affiliation:

1. From the Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Cambridge, United Kingdom.

Abstract

Objective— Vascular smooth muscle cells (VSMCs) that become senescent are both present within atherosclerotic plaques and thought to be important to the disease process. However, senescent VSMCs are generally considered to only contribute through inaction, with failure to proliferate resulting in VSMC- and collagen-poor unstable fibrous caps. Whether senescent VSMCs can actively contribute to atherogenic processes, such as inflammation, is unknown. Approach and Results— We find that senescent human VSMCs develop a proinflammatory state known as a senescence-associated secretory phenotype. Senescent human VSMCs release high levels of multiple cytokines and chemokines driven by secreted interleukin-1α acting in an autocrine manner. Consequently, the VSMC senescence-associated secretory phenotype promotes chemotaxis of mononuclear cells in vitro and in vivo. In addition, senescent VSMCs release active matrix metalloproteinase-9, secrete less collagen, upregulate multiple inflammasome components, and prime adjacent endothelial cells and VSMCs to a proadhesive and proinflammatory state. Importantly, maintaining the senescence-associated secretory phenotype places a large metabolic burden on senescent VSMCs, such that they can be selectively killed by inhibiting glucose utilization. Conclusions— Senescent VSMCs may actively contribute toward the chronic inflammation associated with atherosclerosis through the interleukin-1α–driven senescence-associated secretory phenotype and the priming of adjacent cells to a proatherosclerotic state. These data also suggest that inhibition of this potentially important source of chronic inflammation in atherosclerosis requires blockade of interleukin-1α and not interleukin-1β.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 194 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The functional role of cellular senescence during vascular calcification in chronic kidney disease;Frontiers in Endocrinology;2024-01-22

2. Advances in Clinical Imaging of Vascular Inflammation;JACC: Basic to Translational Science;2023-12

3. Role of vascular smooth muscle cell clonality in atherosclerosis;Frontiers in Cardiovascular Medicine;2023-11-28

4. Identification and functional analysis of senescent cells in the cardiovascular system using omics approaches;American Journal of Physiology-Heart and Circulatory Physiology;2023-11-01

5. Cellular Senescence in Cardiovascular Diseases: From Pathogenesis to Therapeutic Challenges;Journal of Cardiovascular Development and Disease;2023-10-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3