MARK4 (Microtubule Affinity-Regulating Kinase 4)-Dependent Inflammasome Activation Promotes Atherosclerosis—Brief Report

Author:

Clement Marc1,Chen Xiao2,Chenoweth Hannah L.1,Teng Zhongzhao3,Thome Sarah1,Newland Stephen A.1,Harrison James1,Yu Xian1,Finigan Alison J.1,Mallat Ziad14,Li Xuan1

Affiliation:

1. From the Division of Cardiovascular Medicine, University of Cambridge, United Kingdom (M.C., H.L.C., S.T., S.A.N., J.H., X.Y., A.J.F., Z.M., X.L.)

2. Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China (X.C.)

3. Department of Radiology, University of Cambridge, United Kingdom (Z.T.)

4. Institut National de la Santé et de la Recherche Médicale, Paris Cardiovascular Research Center, France (Z.M.).

Abstract

Objective: MARK4 (microtubule affinity-regulating kinase 4) regulates NLRP3 (nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 3) inflammasome activation. The aim of the study is to examine the role of MARK4 in hematopoietic cells during atherosclerosis. Methods and Results: We show increased MARK4 expression in human atherosclerotic lesions compared with adjacent areas. MARK4 is coexpressed with NLRP3, and they colocalize in areas enriched in CD68-positive but α-SMA (α-smooth muscle actin)–negative cells. Expression of MARK4 and NLRP3 in the atherosclerotic lesions is associated with the production of active IL (interleukin)-1β and IL-18. To directly assess the role of hematopoietic MARK4 in NLRP3 inflammasome activation and atherosclerotic plaque formation, Ldlr (low-density lipoprotein receptor)-deficient mice were lethally irradiated and reconstituted with either wild-type or Mark4 -deficient bone marrow cells, and were subsequently fed a high-fat diet and cholesterol diet for 9 weeks. Mark4 deficiency in bone marrow cells led to a significant reduction of lesion size, together with decreased circulating levels of IL-18 and IFN-γ (interferon-γ). Furthermore, Mark4 deficiency in primary murine bone marrow–derived macrophages prevented cholesterol crystal–induced NLRP3 inflammasome activation, as revealed by reduced caspase-1 activity together with reduced production of IL-1β and IL-18. Conclusions: MARK4-dependent NLRP3 inflammasome activation in the hematopoietic cells regulates the development of atherosclerosis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3