Molecular Imaging of the Initial Inflammatory Response in Atherosclerosis

Author:

Kaufmann Beat A.1,Carr Chad L.1,Belcik J. Todd1,Xie Aris1,Yue Qi1,Chadderdon Scott1,Caplan Evan S.1,Khangura Jaspreet1,Bullens Sherry1,Bunting Stuart1,Lindner Jonathan R.1

Affiliation:

1. From the Division of Cardiovascular Medicine (B.A.K., C.L.C., J.T.B., A.X., Q.Y., S.C., E.S.C., J.K., J.R.L.), Oregon Health & Science University Portland; and the Department of Tumor Biology and Angiogenesis (S. Bullens, S. Bunting), Genentech Inc, South San Francisco, Calif.

Abstract

Background— We hypothesized that molecular imaging of endothelial cell adhesion molecule expression could noninvasively evaluate prelesion atherogenic phenotype. Methods and Results— Mice deficient for the LDL-receptor and the Apobec-1 editing peptide (DKO mice) were studied as an age-dependent model of atherosclerosis. At 10, 20, and 40 weeks of age, ultrasound molecular imaging of the proximal thoracic aorta was performed with contrast agents targeted to P-selectin and VCAM-1. Atherosclerotic lesion severity and content were assessed by ultrahigh frequency ultrasound, histology, and immunohistochemistry. In wild-type mice at all ages, there was neither aortic thickening nor targeted tracer signal enhancement. In DKO mice, lesions progressed from sparse mild intimal thickening at 10 weeks to widespread severe lesions with luminal encroachment at 40 weeks. Molecular imaging for P-selectin and VCAM-1 demonstrated selective signal enhancement ( P <0.01 versus nontargeted agent) at all ages for DKO mice. P-selectin and VCAM-1 signal in DKO mice were greater by 3-fold at 10 weeks, 4- to 6-fold at 20 weeks, and 9- to 10-fold at 40 weeks compared to wild-type mice. En face microscopy demonstrated preferential attachment of targeted microbubbles to regions of lesion formation. Conclusions— Noninvasive ultrasound molecular imaging of endothelial activation can detect lesion-prone vascular phenotype before the appearance of obstructive atherosclerotic lesions.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3