Proteasomal Inhibition Promotes ATP-Binding Cassette Transporter A1 (ABCA1) and ABCG1 Expression and Cholesterol Efflux From Macrophages In Vitro and In Vivo

Author:

Ogura Masatsune1,Ayaori Makoto1,Terao Yoshio1,Hisada Tetsuya1,Iizuka Maki1,Takiguchi Shunichi1,Uto-Kondo Harumi1,Yakushiji Emi1,Nakaya Kazuhiro1,Sasaki Makoto1,Komatsu Tomohiro1,Ozasa Hideki1,Ohsuzu Fumitaka1,Ikewaki Katsunori1

Affiliation:

1. From the Divisions of Anti-aging (M.O., M.A., Y.T., T.H., M.I., S.T., H.U.-K., E.Y., K.N., M.S., T.K., H.O., K.I.) and Cardiology (M.O., T.H., S.T., E.Y., K.N., M.S., T.K., F.O.), Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan.

Abstract

Objective— ATP-binding cassette transporter A1 (ABCA1) and ABCG1 are key molecules in an initial step of reverse cholesterol transport (RCT), a major antiatherogenic property of high-density lipoprotein (HDL). The ubiquitin-proteasome system (UPS) mediates nonlysosomal pathways for protein degradation and is known to be involved in atherosclerosis. However, little is known about the effects of the UPS on these molecules and overall RCT. We therefore investigated whether UPS inhibition affects ABCA1/G1 expression in macrophages and RCT in vitro and in vivo. Methods and Results— Various proteasome inhibitors increased ABCA1/G1 expression in macrophages, translating into enhanced apolipoprotein A-I– and HDL-mediated cholesterol efflux from macrophages. ABCA1 and ABCG1 were found to undergo polyubiquitination in the macrophages and HEK293 cells overexpressing these proteins, and pulse-chase analysis revealed that proteasome inhibitors inhibited ABCA1/G1 protein degradation. In in vivo experiments, the proteasome inhibitor bortezomib increased ABCA1/G1 protein levels in mouse peritoneal macrophages, and RCT assays showed that it significantly increased the fecal (54% increase compared with saline) and plasma (23%) appearances of the tracer derived from intraperitoneally injected 3 H-cholesterol-labeled macrophages. Conclusion— The present study provided evidence that the UPS is involved in ABCA1/G1 degradation, thereby affecting RCT in vivo. Therefore, specific inhibition of the UPS pathway might lead to a novel HDL therapy that enhances RCT.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3