Molecular Ultrasound Imaging of Junctional Adhesion Molecule A Depicts Acute Alterations in Blood Flow and Early Endothelial Dysregulation

Author:

Curaj Adelina1,Wu Zhuojun1,Rix Anne1,Gresch Oliver1,Sternkopf Marieke1,Alampour-Rajabi Setareh1,Lammers Twan1,van Zandvoort Marc1,Weber Christian1,Koenen Rory R.1,Liehn Elisa A.1,Kiessling Fabian1

Affiliation:

1. From the Institute for Molecular Cardiovascular Research (IMCAR) (A.C., Z.W., M.S., S.A.-R., M.v.Z., E.A.L.), and Institute for Experimental Molecular Imaging (ExMI) (A.C., Z.W., A.R., T.L., F.K.), University Hospital Aachen, RWTH Aachen, Germany; Victor Babes National Institute of Pathology, Bucharest, Romania (A.C.); AYOXXA Biosystems GmbH, Cologne, Germany (O.G.); Department of Targeted Therapeutics, University of Twente, Enschede, The Netherlands (T.L.); Department of Genetics and Molecular Cell...

Abstract

Objective— The junctional adhesion molecule A (JAM-A) is physiologically located in interendothelial tight junctions and focally redistributes to the luminal surface of blood vessels under abnormal shear and flow conditions accompanying atherosclerotic lesion development. Therefore, JAM-A was evaluated as a target for molecularly targeted ultrasound imaging of transient endothelial dysfunction under acute blood flow variations. Approach and Results— Flow-dependent endothelial dysfunction was induced in apolipoprotein E–deficient mice (n=43) by carotid partial ligation. JAM-A expression was investigated by molecular ultrasound using antibody-targeted poly(n-butyl cyanoacrylate) microbubbles and validated with immunofluorescence. Flow disturbance and arterial remodeling were assessed using functional ultrasound. Partial ligation led to an immediate drop in perfusion at the ligated side and a direct compensatory increase at the contralateral side. This was accompanied by a strongly increased JAM-A expression and JAM-A–targeted microbubbles binding at the partially ligated side and by a moderate and temporary increase in the contralateral artery (≈14× [ P <0.001] and ≈5× [ P <0.001] higher than control, respectively), both peaking after 2 weeks. Subsequently, although JAM-A expression and JAM-A–targeted microbubbles binding persisted at a higher level at the partially ligated side, it completely normalized within 4 weeks at the contralateral side. Conclusions— Temporary blood flow variations induce endothelial rearrangement of JAM-A, which can be visualized using JAM-A–targeted microbubbles. Thus, JAM-A may be considered as a marker of acute endothelial activation and dysfunction. Its imaging may facilitate the early detection of cardiovascular risk areas, and it enables the therapeutic prevention of their progression toward an irreversible pathological state.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3