Glucose and GLP-2 (Glucagon-Like Peptide-2) Mobilize Intestinal Triglyceride by Distinct Mechanisms

Author:

Stahel Priska1,Xiao Changting1,Davis Xenia2,Tso Patrick2,Lewis Gary F.1

Affiliation:

1. From the Division of Endocrinology and Metabolism, Department of Medicine and Physiology, Banting & Best Diabetes Centre, University of Toronto, ON, Canada (P.S., C.X., G.F.L.)

2. Department of Pathology and Laboratory Medicine, University of Cincinnati, OH (X.D., P.T.).

Abstract

Objective: Dietary triglycerides are partially retained in the intestine within intracellular or extracellular compartments, which can be rapidly mobilized in response to several stimuli, including glucose and GLP-2 (glucagon-like peptide-2). To elucidate the mechanism of intestinal lipid mobilization, this study examined the patterns and time course of lymph flow and triglycerides after glucose and GLP-2 treatment in rats. Approach and Results: Lymph flow, triglyceride concentration, and triglyceride output were assessed in mesenteric lymph duct-cannulated rats in response to an intraduodenal (i.d.) lipid bolus followed 5 hours later by either (1) i.d. saline+intraperitoneal (i.p.) saline (placebo), (2) i.d. glucose plus i.p. saline, (3) i.d. saline+i.p. GLP-2, or (4) i.d. glucose+i.p. GLP-2. GLP-2 and glucose administered alone or in combination stimulated total triglyceride output to a similar extent, but the timing and pattern of stimulation differed markedly. Whereas GLP-2 rapidly increased lymph flow with no effect on lymph triglyceride concentration or triglyceride:apoB48 (apolipoprotein B48) ratio (a surrogate marker of chylomicron size) compared with placebo, glucose transiently decreased lymph flow followed by delayed stimulation of lymph flow and increased lymph triglyceride concentration and triglyceride:apoB48 ratio. Conclusions: Glucose and GLP-2 robustly enhanced intestinal triglyceride output in rats but with different effects on lymph flow, lymph triglyceride concentration, and chylomicron size. GLP-2 stimulated triglyceride output primarily by enhancing lymph flow with no effect on chylomicron size, whereas glucose mobilized intestinal triglycerides, stimulating secretion of larger chylomicrons. This suggests that these 2 stimuli mobilize intestinal lipid by different mechanisms.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3