Sequential Activation of Matrix Metalloproteinase 9 and Transforming Growth Factor β in Arterial Elastocalcinosis

Author:

Bouvet Céline1,Moreau Simon1,Blanchette Joannie1,de Blois Denis1,Moreau Pierre1

Affiliation:

1. From the Faculty of Pharmacy (C.B., S.M., J.B., P.M.) and the Department of Pharmacology, Faculty of Medicine (D.d.B.), University of Montreal, Québec, Canada.

Abstract

Objective— Isolated systolic hypertension is associated with increased elastase activity, vascular calcification, and vascular stiffness. We sought to determine the importance of elastase activity and matrix degradation in the development of elastocalcinosis. Methods and Results— Elastocalcinosis was induced in vivo and ex vivo using warfarin. Hemodynamic parameters, calcium deposition, elastin degradation, transforming growth factor (TGF)-β signaling, and elastase activity were evaluated at different time points in the in vivo model. Metalloproteinases, serine proteases, and cysteine proteases were blocked to measure their relative implication in elastin degradation. Gradual elastocalcinosis was obtained, and paralleled the elastin degradation pattern. Matrix metalloproteinase (MMP)-9 activity was increased at 5 days of warfarin treatment, whereas TGF-β signaling was increased at 7 days. Calcification was significantly elevated after 21 days. Blocking metalloproteinases activation with doxycycline and TGF-β signaling with SB-431542 were able to prevent calcification. Conclusions— Early MMP-9 activation precedes the increase of TGF-β signaling, and overt vascular elastocalcinosis and stiffness. Modulation of matrix degradation could represent a novel therapeutic avenue to prevent the gradual age-related stiffening of large arteries, leading to isolated systolic hypertension.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 88 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3