Respiratory muscle function and dyspnea in patients with chronic congestive heart failure.

Author:

Mancini D M1,Henson D1,LaManca J1,Levine S1

Affiliation:

1. Cardiovascular Section, Philadelphia Veterans Administration Medical Center, Pa.

Abstract

BACKGROUND Patients with heart failure (HF) frequently experience exertional dyspnea. Using near-infrared spectroscopy, we have previously demonstrated accessory respiratory muscle deoxygenation during exercise in these patients by monitoring changes in light absorption at 760-800 nm. METHODS AND RESULTS To investigate whether low-frequency respiratory muscle fatigue occurs, we performed supramaximal bilateral transcutaneous phrenic nerve stimulation before and after maximal bicycle exercise in 10 patients with HF (age, 62 +/- 10 years; ejection fraction, 18 +/- 7%) and six normal subjects (age, 50 +/- 8 years). Maximal rates of contraction and relaxation, peak twitch tension, and maximal transdiaphragmatic pressure (Pdi) were derived before and after exercise from analysis of six to 12 twitches obtained at functional residual capacity. Pdi, time in inspiration (Ti), time per breath (TTOT), respiratory gases, ratings of perceived dyspnea and fatigue, and 760-800 nm near-infrared spectroscopy absorbency changes of the serratus anterior muscle were measured throughout exercise. The tension time index (TTdi) of the diaphragm was derived. In both normal and HF subjects, all parameters of diaphragmatic function (i.e., maximal rates of contraction and relaxation, peak twitch tension, and maximal Pdi) were unchanged before and after exercise. Mean Pdi was comparable at rest (normal, 3.7 +/- 1; HF, 5.8 +/- 2.9 cm H2O; p = NS) but significantly greater in patients with HF at peak exercise (normal, 12.1 +/- 3; HF, 18.3 +/- 6.6 cm H2O; p less than 0.05). Ti/TTOT of both groups was similar at rest and throughout exercise. TTdi was significantly greater at rest (normal, 0.01 +/- 0.01; HF, 0.03 +/- 0.02; p less than 0.05) and at peak exercise (normal, 0.03 +/- 0.02; HF, 0.10 +/- 0.03; p less than 0.04) in patients with HF. Significant accessory respiration muscle deoxygenation was noted only in patients with HF (peak exercise; normal, -1 +/- 13; HF, 28 +/- 15 arbitrary units; p less than 0.01). Linear correlation analysis was performed between ratings of perceived dyspnea and parameters of pulmonary and diaphragmatic function. Significant correlations were observed between ratings of perceived dyspnea and maximal inspiratory and expiratory pressure, the TTdi of the diaphragm, near-infrared absorption changes, and forced expiratory volume in 1 second (FEV1) (all r greater than 0.5; p less than 0.05). Thus, respiratory muscle strength, work, and oxygenation were significantly correlated with the degree of dyspnea. CONCLUSIONS We conclude that low-frequency diaphragmatic muscle fatigue does not occur despite accessory respiratory muscle deoxygenation during exercise in patients with HF. However, diaphragmatic work as assessed by the TTdi is dramatically increased in patients with HF and approaches levels previously shown to generate fatigue. The sensation of dyspnea appears closely related to respiratory muscle function.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3