Novel Role of Prereplication Complex Component Cell Division Cycle 6 in Retinal Neovascularization

Author:

Kumar Raj1,Rao Gadiparthi N.1ORCID

Affiliation:

1. Department of Physiology, University of Tennessee Health Science Center, Memphis.

Abstract

Background: The major aim of this study is to investigate whether CDC6 (cell division cycle 6), a replication origin recognition complex component, plays a role in retinal neovascularization, and if so, to explore the underlying mechanisms. Methods: In this study, we used a variety of approaches including cellular and moleculer biological methodologies as well as global and tissue-specific knockout mice in combination with an oxygen-induced retinopathy model to study the role of CDC6 in retinal neovascularization. Results: VEGFA (vascular endothelial growth factor A)-induced CDC6 expression in a time-dependent manner in human retinal microvascular endothelial cells. In addition, VEGFA-induced CDC6 expression was dependent on PLCβ3 (phospholipase Cβ3)-mediated NFATc1 (nuclear factor of activated T cells c1) activation. Furthermore, while siRNA-mediated depletion of PLCβ3, NFATc1, or CDC6 levels blunted VEGFA-induced human retinal microvascular endothelial cell angiogenic events such as proliferation, migration, sprouting, and tube formation, CDC6 overexpression rescued these effects in NFATc1-deficient mouse retinal microvascular endothelial cells. In accordance with these observations, global knockdown of PLCβ3 or endothelial cell–specific deletion of NFATc1 or siRNA-mediated depletion of CDC6 levels substantially inhibited oxygen-induced retinopathy–induced retinal sprouting and neovascularization. In addition, retroviral-mediated overexpression of CDC6 rescued oxygen-induced retinopathy–induced retinal neovascularization from inhibition in PLCβ3 knockout mice and in endothelial cell–specific NFATc1-deficient mice. Conclusions: The above observations clearly reveal that PLCβ3-mediated NFATc1 activation-dependent CDC6 expression plays a crucial role in VEGFA/oxygen-induced retinopathy-induced retinal neovascularization.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3