EVA1A (Eva-1 Homolog A) Promotes Endothelial Apoptosis and Inflammatory Activation Under Disturbed Flow Via Regulation of Autophagy

Author:

Canham Lindsay1ORCID,Sendac Sam1ORCID,Diagbouga Mannekomba R.1ORCID,Wolodimeroff Elena1ORCID,Pirri Daniela2ORCID,Tardajos Ayllon Blanca1ORCID,Feng Shuang1,Souilhol Celine3,Chico Timothy J.A.1,Evans Paul C.14,Serbanovic-Canic Jovana1ORCID

Affiliation:

1. Department of Infection, Immunity, and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, United Kingdom (L.C., S.S., M.R.D., E.W., B.T.A., S.F., T.J.A.C., P.C.E., J.S.-C.).

2. National Heart and Lung Institute, Imperial College London, United Kingdom (D.P.).

3. Biomolecular Sciences Research Centre, Sheffield Hallam University, United Kingdom (C.S.).

4. William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (P.C.E.).

Abstract

Background: Hemodynamic wall shear stress (WSS) exerted on the endothelium by flowing blood determines the spatial distribution of atherosclerotic lesions. Disturbed flow (DF) with a low WSS magnitude and reversing direction promotes atherosclerosis by regulating endothelial cell (EC) viability and function, whereas un-DF which is unidirectional and of high WSS magnitude is atheroprotective. Here, we study the role of EVA1A (eva-1 homolog A), a lysosome and endoplasmic reticulum-associated protein linked to autophagy and apoptosis, in WSS-regulated EC dysfunction. Methods: The effect of WSS on EVA1A expression was studied using porcine and mouse aortas and cultured human ECs exposed to flow. EVA1A was silenced in vitro in human ECs and in vivo in zebrafish using siRNA (small interfering RNA) and morpholinos, respectively. Results: EVA1A was induced by proatherogenic DF at both mRNA and protein levels. EVA1A silencing resulted in decreased EC apoptosis, permeability, and expression of inflammatory markers under DF. Assessment of autophagic flux using the autolysosome inhibitor, bafilomycin coupled to the autophagy markers LC3-II (microtubule-associated protein 1 light chain 3-II) and p62, revealed that EVA1A knockdown promotes autophagy when ECs are exposed to DF, but not un-DF . Blocking autophagic flux led to increased EC apoptosis in EVA1A -knockdown cells exposed to DF, suggesting that autophagy mediates the effects of DF on EC dysfunction. Mechanistically, EVA1A expression was regulated by flow direction via TWIST1 (twist basic helix-loop-helix transcription factor 1). In vivo, knockdown of EVA1A orthologue in zebrafish resulted in reduced EC apoptosis, confirming the proapoptotic role of EVA1A in the endothelium. Conclusions: We identified EVA1A as a novel flow-sensitive gene that mediates the effects of proatherogenic DF on EC dysfunction by regulating autophagy.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3