Cell-Specific Effects of GATA (GATA Zinc Finger Transcription Factor Family)-6 in Vascular Smooth Muscle and Endothelial Cells on Vascular Injury Neointimal Formation

Author:

Zhuang Tao1,Liu Jie1,Chen Xiaoli1,Pi Jingjiang2,Kuang Yashu1,Wang Yanfang1,Tomlinson Brain3,Chan Paul4,Zhang Qi2,Li Ying2,Yu Zuoren1,Zheng Xiangjian56,Reilly Muredach7,Morrisey Edward8,Zhang Lin1,Liu Zhongmin19,Zhang Yuzhen1

Affiliation:

1. From the Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine (T.Z., J.L., X.C., Y.K., Y.W., Z.Y., L.Z., Z.L., Y.Z.), Shanghai East Hospital, Tongji University School of Medicine, China

2. Department of Cardiology (Q.Z., Y.L., J.P.), Shanghai East Hospital, Tongji University School of Medicine, China

3. Department of Medicine and Therapeutics, The Chinese University of Hong Kong, China (B.T.)

4. Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taiwan (P.C.)

5. Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, China (X.Z.)

6. Laboratory of Cardiovascular Signaling, Centenary Institute, Camperdown, NSW, Australia (X.Z.)

7. Cardiology Division, Department of Medicine and the Irving Institute for Clinical and Translational Research, Columbia University, New York, NY (M.R.)

8. Department of Cell and Developmental Biology, Department of Medicine, Penn Cardiovascular Institute, Penn Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia (E.M.).

9. Department of Cardiovascular and Thoracic Surgery (Z.L.), Shanghai East Hospital, Tongji University School of Medicine, China

Abstract

Objective— Transcription factor GATA (GATA zinc finger transcription factor family)-6 is highly expressed in vessels and rapidly downregulated in balloon-injured carotid arteries and viral delivery of GATA-6 to the vessels limited the neointimal formation, however, little is known about its cell-specific regulation of in vivo vascular smooth muscle cell (VSMC) phenotypic state contributing to neointimal formation. This study aims to determine the role of vascular cell-specific GATA-6 in ligation- or injury-induced neointimal hyperplasia in vivo. Approach and Results— Endothelial cell and VSMC-specific GATA-6 deletion mice are generated, and the results indicate that endothelial cell-specific GATA-6 deletion mice exhibit significant decrease of VSMC proliferation and attenuation of neointimal formation after artery ligation and injury compared with the wild-type littermate control mice. PDGF (platelet-derived growth factor)-B is identified as a direct target gene, and endothelial cell-GATA-6-PDGF-B pathway regulates VSMC proliferation and migration in a paracrine manner which controls the neointimal formation. In contrast, VSMC-specific GATA-6 deletion promotes injury-induced VSMC transformation from contractile to proliferative synthetic phenotype leading to increased neointimal formation. CCN (cysteine-rich 61/connective tissue growth factor/nephroblastoma overexpressed family)-5 is identified as a novel target gene, and VSMC-specific CCN-5 overexpression in mice reverses the VSMC-GATA-6 deletion-mediated increased cell proliferation and migration and finally attenuates the neointimal formation. Conclusions— This study gives us a direct in vivo evidence of GATA-6 cell lineage-specific regulation of PDGF-B and CCN-5 on VSMC phenotypic state, proliferation and migration contributing to neointimal formation, which advances our understanding of in vivo neointimal hyperplasia, meanwhile also provides opportunities for future therapeutic interventions.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3