S-Nitrosylation of Plastin-3 Exacerbates Thoracic Aortic Dissection Formation via Endothelial Barrier Dysfunction

Author:

Pan Lihong1,Lin Zhe1,Tang Xin1,Tian Jiaxin1,Zheng Qiao1,Jing Jin2,Xie Liping1,Chen Hongshan1,Lu Qiulun2,Wang Hong3,Li Qingguo4,Han Yi5,Ji Yong1

Affiliation:

1. From the Key Laboratory of Cardiovascular and Cerebrovascular Medicine, State Key Laboratory of Reproductive Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, China (L.P., Z.L., X.T., J.T., Q.Z., L.X., H.C., Y.J.)

2. Department of Cardiovascular Center, The Second Affiliated Hospital of Nanjing Medical University, China (J.J., Q.L.)

3. Center for Metabolic Disease Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA (H.W.)

4. Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, China (Q.L.)

5. Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, China (Y.H.).

Abstract

Objective: Thoracic aortic dissection (TAD) is a fatal disease that leads to aortic rupture and sudden death. However, little is known about the effect and molecular mechanism of S-nitrosylation (SNO) modifications in TAD formation. Approach and Results: SNO levels were higher in aortic tissues from TAD patients than in those from healthy controls, and PLS3 (plastin-3) SNO was identified by liquid chromatography-tandem mass spectrometry analysis. Furthermore, tail vein administration of endothelial-specific adeno-associated viruses of mutant PLS3-C566A (denitrosylated form) suppressed the development of TAD in mice, but the wild-type PLS3 (S-nitrosylated form) virus did not. Mechanistically, Ang II (angiotensin II)–induced PLS3 SNO enhanced the association of PLS3 with both plectin and cofilin via an iNOS (inducible nitric oxide synthase)-dependent pathway in endothelial cells. The formation of PLS3/plectin/cofilin complex promoted cell migration and tube formation but weakened adherens junction formation in Ang II–treated endothelial cells. Interestingly, denitrosylated form of PLS3 partially mitigated Ang II–induced PLS3/plectin/cofilin complex formation and cell junction disruption. Additionally, the inhibition of iNOS attenuated PLS3 SNO and the association of PLS3 with plectin and cofilin, thereby modulating endothelial barrier function. Conclusions: Our data indicate that protein SNO modification in endothelial cells modulates the progression of aortic aneurysm and dissection. The iNOS-mediated SNO of PLS3 at the Cys566 site promoted its interaction with cofilin and plectin, thus contributing to endothelial barrier disruption and pathological angiogenesis in TAD.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3