PAR4 Inhibition Reduces Coronary Artery Atherosclerosis and Myocardial Fibrosis in SR-B1/LDLR Double Knockout Mice

Author:

Lee Samuel K.123,Malik Rida A.142ORCID,Zhou Ji142ORCID,Wang Wei123ORCID,Gross Peter L.142ORCID,Weitz Jeffrey I.1423ORCID,Ramachandran Rithwik5ORCID,Trigatti Bernardo L.123ORCID

Affiliation:

1. Thrombosis and Atherosclerosis Research Institute (S.K.L., R.A.M., J.Z., W.W., P.L.G., J.I.W., B.L.T.), McMaster University, Hamilton, Ontario, Canada.

2. Hamilton Health Sciences, Ontario, Canada (S.K.L., R.A.M., J.Z., W.W., P.L.G., J.I.W., B.L.T.).

3. Department of Biochemistry and Biomedical Sciences McMaster University, Hamilton, Ontario, Canada (S.K.L., W.W., J.I.W., B.L.T.).

4. Department of Medicine (R.A.M., J.Z., P.L.G., J.I.W.), McMaster University, Hamilton, Ontario, Canada.

5. Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada (R.R.).

Abstract

BACKGROUND: SR-B1 (scavenger receptor class B type 1)/LDLR (low-density lipoprotein receptor) double knockout mice fed a high-fat, high-cholesterol diet containing cholate exhibit coronary artery disease characterized by occlusive coronary artery atherosclerosis, platelet accumulation in coronary arteries, and myocardial fibrosis. Platelets are involved in atherosclerosis development, and PAR (protease-activated receptor) 4 has a prominent role in platelet function in mice. However, the role of PAR4 on coronary artery disease in mice has not been tested. METHODS: We tested the effects of a PAR4 inhibitory pepducin (RAG8) on diet-induced aortic sinus and coronary artery atherosclerosis, platelet accumulation in atherosclerotic coronary arteries, and myocardial fibrosis in SR-B1/LDLR double knockout mice. SR-B1/LDLR double knockout mice were fed a high-fat, high-cholesterol diet containing cholate and injected daily with 20 mg/kg of either the RAG8 pepducin or a control reverse-sequence pepducin (SRQ8) for 20 days. RESULTS: Platelets from the RAG8-treated mice exhibited reduced thrombin and PAR4 agonist peptide–mediated activation compared with those from control SRQ8-treated mice when tested ex vivo. Although aortic sinus atherosclerosis levels did not differ, RAG8-treated mice exhibited reduced coronary artery atherosclerosis, reduced platelet accumulation in atherosclerotic coronary arteries, and reduced myocardial fibrosis. These protective effects were not accompanied by changes in circulating lipids, inflammatory cytokines, or immune cells. However, RAG8-treated mice exhibited reduced VCAM-1 (vascular cell adhesion molecule 1) protein levels in nonatherosclerotic coronary artery cross sections and reduced leukocyte accumulation in atherosclerotic coronary artery cross sections compared with those from SRQ8-treated mice. CONCLUSIONS: The PAR4 inhibitory RAG8 pepducin reduced coronary artery atherosclerosis and myocardial fibrosis in SR-B1/LDLR double knockout mice fed a high-fat, high-cholesterol diet containing cholate. Furthermore, RAG8 reduced VCAM-1 in nonatherosclerotic coronary arteries and reduced leukocyte and platelet accumulation in atherosclerotic coronary arteries. These findings identify PAR4 as an attractive target in reducing coronary artery disease development, and the use of RAG8 may potentially be beneficial in cardiovascular disease.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An innovative viewpoint on the existing and prospectiveness of SR-B1;Current Problems in Cardiology;2024-02

2. MicroRNA‐26a alleviates tubulointerstitial fibrosis in diabetic kidney disease by targeting PAR4;Journal of Cellular and Molecular Medicine;2024-01-02

3. Targeting PAR4 to Reduce Atherosclerosis;Arteriosclerosis, Thrombosis, and Vascular Biology;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3