Wnt Signaling Inhibition Prevents Postnatal Inflammation and Disease Progression in Mouse Congenital Myxomatous Valve Disease

Author:

Xu Na12ORCID,Alfieri Christina M.1,Yu Yang3,Guo Minzhe42ORCID,Yutzey Katherine E.12ORCID

Affiliation:

1. Division of Molecular Cardiovascular Biology, the Heart Institute (N.X., C.M.A., K.E.Y.), Cincinnati Children’s Hospital Medical Center, OH.

2. Department of Pediatrics, University of Cincinnati College of Medicine, OH (N.X., M.G., K.E.Y.).

3. Division of Developmental Biology (Y.Y.), Cincinnati Children’s Hospital Medical Center, OH.

4. Division of Neonatology and Pulmonary Biology (M.G.), Cincinnati Children’s Hospital Medical Center, OH.

Abstract

BACKGROUND: Myxomatous valve disease (MVD) is the most common cause of mitral regurgitation, leading to impaired cardiac function and heart failure. MVD in a mouse model of Marfan syndrome includes valve leaflet thickening and progressive valve degeneration. However, the underlying mechanisms by which the disease progresses remain undefined. METHODS: Mice with Fibrillin 1 gene variant Fbn1 C1039G/+ recapitulate histopathologic features of Marfan syndrome, and Wnt (Wingless-related integration site) signaling activity was detected in TCF/Lef-lacZ (T-cell factor/lymphoid enhancer factor-β-galactosidase) reporter mice. Single-cell RNA sequencing was performed from mitral valves of wild-type and Fbn1 C1039G/+ mice at 1 month of age. Inhibition of Wnt signaling was achieved by conditional induction of the secreted Wnt inhibitor Dkk1 (Dickkopf-1) expression in periostin-expressing valve interstitial cells of Periostin -Cre; tetO-Dkk1; R26rtTA; TCF/Lef-lacZ; Fbn1 C1039G/+ mice. Dietary doxycycline was administered for 1 month beginning with MVD initiation (1-month-old) or MVD progression (2-month-old). Histological evaluation and immunofluorescence for ECM (extracellular matrix) and immune cells were performed. RESULTS: Wnt signaling is activated early in mitral valve disease progression, before immune cell infiltration in Fbn1 C1039G/+ mice. Single-cell transcriptomics revealed similar mitral valve cell heterogeneity between wild-type and Fbn1 C1039G/+ mice at 1 month of age. Wnt pathway genes were predominantly expressed in valve interstitial cells and valve endothelial cells of Fbn1 C1039G/+ mice. Inhibition of Wnt signaling in Fbn1 C1039G/+ mice at 1 month of age prevented the initiation of MVD as indicated by improved ECM remodeling and reduced valve leaflet thickness with decreased infiltrating macrophages. However, later, Wnt inhibition starting at 2 months did not prevent the progression of MVD. CONCLUSIONS: Wnt signaling is involved in the initiation of mitral valve abnormalities and inflammation but is not responsible for later-stage valve disease progression once it has been initiated. Thus, Wnt signaling contributes to MVD progression in a time-dependent manner and provides a promising therapeutic target for the early treatment of congenital MVD in Marfan syndrome.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3