Plaque Evaluation by Ultrasound and Transcriptomics Reveals BCLAF1 as a Regulator of Smooth Muscle Cell Lipid Transdifferentiation in Atherosclerosis

Author:

Rykaczewska Urszula1,Zhao Quanyi2,Saliba-Gustafsson Peter32ORCID,Lengquist Mariette1,Kronqvist Malin1,Bergman Otto3,Huang Zhiqiang4ORCID,Lund Kent1,Waden Katarina1,Pons Vila Zara5,Caidahl Kenneth16,Skogsberg Josefin7,Vukojevic Vladana8ORCID,Lindeman Jan H.N.9ORCID,Roy Joy1,Hansson Göran K.3,Treuter Eckardt4ORCID,Leeper Nicholas J.1011,Eriksson Per3,Ehrenborg Ewa3,Razuvaev Anton1,Hedin Ulf1,Matic Ljubica1ORCID

Affiliation:

1. Division of Vascular Surgery, Department of Molecular Medicine and Surgery (U.R., M.L., M.K., K.L., K.W., K.C., J.R., A.R., U.H., L.M.), Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.

2. Division of Cardiovascular Medicine, Cardiovascular Institute (Q.Z., P.S.-G.), Stanford University School of Medicine, CA.

3. Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine (P.S.-G., O.B., G.K.H., P.E., E.E.), Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.

4. Department of Biosciences and Nutrition (Z.H., E.T.), Karolinska Institutet, Stockholm, Sweden.

5. Clinical Chemistry and Blood Coagulation, Department of Molecular Medicine and Surgery (Z.P.V.), Karolinska Institutet, Stockholm, Sweden.

6. Department of Clinical Physiology, Sahlgrenska University Hospital and Molecular and Clinical Medicine, University of Gothenburg, Sweden (K.C.).

7. Department of Medical Biochemistry and Biophysics (J.S.), Karolinska Institutet, Stockholm, Sweden.

8. Department of Clinical Neuroscience, Center for Molecular Medicine (V.V.), Karolinska Institutet, Stockholm, Sweden.

9. Department of Vascular Surgery, Leiden University Medical Center, the Netherlands (J.H.N.L.).

10. Department of Surgery (N.J.L.), Stanford University School of Medicine, CA.

11. Department of Medicine (N.J.L.), Stanford University School of Medicine, CA.

Abstract

Background: Understanding the processes behind carotid plaque instability is necessary to develop methods for identification of patients and lesions with stroke risk. Here, we investigated molecular signatures in human plaques stratified by echogenicity as assessed by duplex ultrasound. Methods: Lesion echogenicity was correlated to microarray gene expression profiles from carotid endarterectomies (n=96). The findings were extended into studies of human and mouse atherosclerotic lesions in situ, followed by functional investigations in vitro in human carotid smooth muscle cells (SMCs). Results: Pathway analyses highlighted muscle differentiation, iron homeostasis, calcification, matrix organization, cell survival balance, and BCLAF1 (BCL2 [B-cell lymphoma 2]-associated transcription factor 1) as the most significant signatures. BCLAF1 was downregulated in echolucent plaques, positively correlated to proliferation and negatively to apoptosis. By immunohistochemistry, BCLAF1 was found in normal medial SMCs. It was repressed early during atherogenesis but reappeared in CD68+ cells in advanced plaques and interacted with BCL2 by proximity ligation assay. In cultured SMCs, BCLAF1 was induced by differentiation factors and mitogens and suppressed by macrophage-conditioned medium. BCLAF1 silencing led to downregulation of BCL2 and SMC markers, reduced proliferation, and increased apoptosis. Transdifferentiation of SMCs by oxLDL (oxidized low-denisty lipoprotein) was accompanied by upregulation of BCLAF1, CD36, and CD68, while oxLDL exposure with BCLAF1 silencing preserved MYH (myosin heavy chain) 11 expression and prevented transdifferentiation. BCLAF1 was associated with expression of cell differentiation, contractility, viability, and inflammatory genes, as well as the scavenger receptors CD36 and CD68 . BCLAF1 expression in CD68+/BCL2+ cells of SMC origin was verified in plaques from MYH11 lineage-tracing atherosclerotic mice. Moreover, BCLAF1 downregulation associated with vulnerability parameters and cardiovascular risk in patients with carotid atherosclerosis. Conclusions: Plaque echogenicity correlated with enrichment of distinct molecular pathways and identified BCLAF1 , previously not described in atherosclerosis, as the most significant gene. Functionally, BCLAF1 seems necessary for survival and transdifferentiation of SMCs into a macrophage-like phenotype. The role of BCLAF1 in plaque vulnerability should be further evaluated.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3