Inhibition of the Renin-Angiotensin System Fails to Suppress β-Aminopropionitrile–Induced Thoracic Aortopathy in Mice—Brief Report

Author:

Sawada Hisashi123ORCID,Ohno-Urabe Satoko1ORCID,Ye Dien1ORCID,Franklin Michael K.1ORCID,Moorleghen Jessica J.1ORCID,Howatt Deborah A.1ORCID,Mullick Adam E.4ORCID,Daugherty Alan123ORCID,Lu Hong S.123ORCID

Affiliation:

1. Saha Cardiovascular Research Center (H.S., S.O.-U., D.Y., M.K.F., J.J.M., D.A.H., A.D., H.S.L.), University of Kentucky, Lexington.

2. Saha Aortic Center (H.S., A.D., H.S.L.), University of Kentucky, Lexington.

3. Department of Physiology (H.S., A.D., H.S.L.), University of Kentucky, Lexington.

4. Ionis Pharmaceuticals, Carlsbad, CA (A.E.M.).

Abstract

Background: Cross-linking of lysine residues in elastic and collagen fibers is a vital process in aortic development. Inhibition of lysyl oxidase by BAPN (β-aminopropionitrile) leads to thoracic aortopathies in mice. Although the renin-angiotensin system contributes to several types of thoracic aortopathies, it remains unclear whether inhibition of the renin-angiotensin system protects against aortopathy caused by the impairment of elastic fiber/collagen crosslinking. Methods: BAPN (0.5% wt/vol) was started in drinking water to induce aortopathies in male C57BL/6J mice at 4 weeks of age for 4 weeks. Five approaches were used to investigate the impact of the renin-angiotensin system. Bulk RNA sequencing was performed to explore potential molecular mechanisms of BAPN-induced thoracic aortopathies. Results: Losartan increased plasma renin concentrations significantly, compared with vehicle-infused mice, indicating effective angiotensin II type 1 receptor inhibition. However, losartan did not suppress BAPN-induced aortic rupture and dilatation. Since losartan is a surmountable inhibitor of the renin-angiotensin system, irbesartan, an insurmountable inhibitor, was also tested. Although increased plasma renin concentrations indicated effective inhibition, irbesartan did not ameliorate aortic rupture and dilatation in BAPN-administered mice. Thus, BAPN-induced thoracic aortopathies were refractory to angiotensin II type 1 receptor blockade. Next, we inhibited angiotensin II production by pharmacological or genetic depletion of AGT (angiotensinogen), the unique precursor of angiotensin II. However, neither suppressed BAPN-induced thoracic aortic rupture and dilatation. Aortic RNA sequencing revealed molecular changes during BAPN administration that were distinct from other types of aortopathies in which angiotensin II type 1 receptor inhibition protects against aneurysm formation. Conclusions: Inhibition of either angiotensin II action or production of the renin-angiotensin system does not attenuate BAPN-induced thoracic aortopathies in mice.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3