Affiliation:
1. From the Departments of Physiology (A.J.B., U.S., A.R.) and Pharmacology (D.M.), Centre Médical Universitaire, University of Geneva, Geneva, Switzerland; Department of Pharmacology (E.S.L.), University of Pittsburgh, Pittsburgh, Pa; and Center of Electron Microscopy (S.F.), University of Lausanne, Lausanne, Switzerland.
Abstract
How vesicles are born in the
trans
-Golgi network and reach their docking sites at the plasma membrane is still largely unknown and is investigated in the present study on live, primary cultured atrial cardiomyocytes. Secretory vesicles (n=422) are visualized by expressing fusion proteins of proatrial natriuretic peptide (proANP) and green fluorescent protein. Myocytes expressing fusion proteins with intact proANP display two populations of fluorescent vesicles with apparent diameters of 120 and 175 nm, moving at a top velocity of 0.3 μm/s. The number of docked vesicles is significantly correlated with the number of mobile vesicles (
r
=0.71,
P
<0.0005). The deletion of the acidic N-terminal proANP[1-44] or point mutations (glu
23,24
→gln
23,24
) change size and shape—but not velocity—of the vesicles, and, strikingly, abolish their docking at the plasma membrane. The shapes thus change from spheres to larger, irregular floppy bags or vesicle trains. Deletion of the C-terminal proANP[45-127], where the ANP and its disulfide bond reside, does not change size, shape, docking, or velocity of the mobile vesicles. The N-terminal acid calcium-binding sequence of proANP is known to cause protein aggregation at the high calcium concentration prevailing in the
trans
-Golgi network. Therefore, these results indicate that amino acid residues favoring cargo aggregation are critically important in shaping the secretory vesicles and determining their fate—docking or not docking—at the plasma membrane. The full text of this article is available at http://www.circresaha.org.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Cardiology and Cardiovascular Medicine,Physiology
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献