Sodium pump inhibition, enhanced calcium influx via sodium-calcium exchange, and positive inotropic response in cultured heart cells.

Author:

Barry W H,Hasin Y,Smith T W

Abstract

The effects of sodium pump inhibition produced by exposure to the cardiac glycosides, ouabain or dihydroouabain, or by reduction in extracellular potassium to 1.0 mM, on contractile state and sodium-calcium exchange were studied in primary monolayer cultures of chick embryo ventricular cells. Ouabain, 10(-6)M, dihydroouabain, 5 X 10(-5)M, and extracellular potassium of 1.0 mM all induced similar and prominent positive inotropic effects. These effects were accompanied, in each case, by 40-50% inhibition of the rate of active uptake of 42K and by similar increases in steady state sodium content. Stimulation of the rate of 45Ca uptake on exposure to zero extracellular sodium occurred in response to extracellular potassium (1.0 mM) or to glycoside concentrations that induced a positive inotropic effect and sodium-potassium pump inhibition. Reactivation of the sodium pump after return from 1.0 to 4.0 mM extracellular potassium was rapid and was associated with membrane hyperpolarization and slowing of spontaneous beating rate. With pump reactivation under these circumstances, the time course of disappearance of stimulation of sodium-calcium exchange on exposure to zero extracellular sodium was similar to the time course of loss of the positive inotropic effect. Under physiological conditions (4.0 mM extracellular potassium), exposure to positively inotropic but nontoxic concentrations of ouabain or dihydroouabain caused a small but consistent increase in unidirectional calcium influx, but had no discernible effect on calcium efflux. Since similar inotropic effects were produced for comparable degrees of glycoside or low extracellular potassium-induced sodium pump inhibition and increases in cellular sodium content, sodium pump inhibition rather than a glycoside-specific change in calcium binding appears to underlie the inotropic response. These findings are further consistent with the view that the primary mechanism of the positive inotropic effects of digitalis and low extracellular potassium in this experimental preparation is sodium pump inhibition resulting in increased intracellular sodium. We suggest that increased calcium influx via sodium-calcium exchange is the principal mechanism whereby increased intracellular sodium results in enhanced calcium availability to the myofibrils, but an additional effect on calcium efflux is not excluded.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 101 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3