Influence of ribose, adenosine, and "AICAR" on the rate of myocardial adenosine triphosphate synthesis during reperfusion after coronary artery occlusion in the dog.

Author:

Mauser M,Hoffmeister H M,Nienaber C,Schaper W

Abstract

Recovery of adenosine triphosphate after myocardial ischemia is limited by the slow adenine nucleotide de novo synthesis and the availability of precursors of the nucleotide salvage pathways. We determined the adenine nucleotide de novo synthesis in the dog by infusion of [14C]glycine and the acceleration of adenine nucleotide built up by intracoronary infusion of ribose together with [14C]glycine or radiolabeled 5-amino-4-imidazolcarboxamide riboside or adenosine in the same animal model and with the same dosage of substrates (9 mmol) in postischemic and nonischemic myocardial tissue. After 45 minutes of occlusion of a side branch of the left coronary artery, the ischemic area was reperfused for 3 hours, and needle biopsies were taken for biochemical analysis. Adenine nucleotide de novo synthesis was found to be very slow (1.5 nmol/g wet weight per hour). The rate was doubled after ischemia. Adenine nucleotide synthesis was accelerated 5-fold by ribose, the basic substrate of the adenine nucleotide de novo synthesis, 9-fold by 5-amino-4-imidazolcarboxamide riboside, an intermediate of the adenine nucleotide de novo synthesis and 90-fold by adenosine, a substrate of the nucleotide salvage pathway. Therefore, only adenosine infusion resulted in a measurable increase of adenosine triphosphate levels after 3 hours of reperfusion, but over a longer time period, ribose or 5-amino-4-imidazol-carboxamide riboside also can be expected to replenish reduced myocardial adenosine triphosphate faster than adenine nucleotide de novo synthesis. Studies with radiolabeled 5-amino-4-imidazol-carboxamide riboside showed significant incorporation of radioactivity into 5-amino-4-imidazol-carboxamide ribose triphosphate which had also risen measurably during 5-amino-4-imidazol-carboxamide ribose infusion, and which is not normally found in heart muscle.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3