Temporal Events Underlying Arterial Remodeling After Chronic Flow Reduction in Mice

Author:

Rudic Radu Daniel1,Bucci Mariarosaria1,Fulton David1,Segal Steven S.1,Sessa William C.1

Affiliation:

1. From the Department of Pharmacology (R.D.R., M.B., D.F., W.C.S.), Yale University School of Medicine and Boyer Center for Molecular Medicine, and The John B. Pierce Laboratory and Department of Cellular and Molecular Physiology (S.S.S.), Yale University School of Medicine, New Haven, Conn.

Abstract

Abstract —To define the cellular events of vascular remodeling in mice, we measured blood flow and analyzed the morphology of remodeled vessels at defined points after a flow-reducing remodeling stimulus for 3, 7, 14, and 35 days. Acute ligation of the left external carotid artery reduced blood flow in the left common carotid artery (LC) compared with sham and contralateral right common carotid arteries (RCs). In morphometric analyses, the decrease in diameter in LCs was reversible by vasodilator perfusion 3 days after ligation, whereas ligation for 7 days or greater resulted in a permanent diameter reduction. Coincident with structural remodeling at day 7 was an increase in cell death in remodeled LCs. Functionally, rings from remodeled LCs contracted to prostaglandin F and relaxed to acetylcholine in a manner identical to that of control arteries. However, remodeled LCs were hypersensitive to the nitrovasodilator sodium nitroprusside (at day 7) and exhibited a marked reduction in basal NO synthesis at 7 and 14 days after ligation. The impairment of endothelial NO synthase function was likely due to post-translational mechanisms, given that endothelial NO synthase mRNA and protein levels did not change in remodeled LCs. These data define the ontogeny of flow-triggered luminal remodeling in adult mice and suggest that endothelial dysfunction occurs during reorganization of the vessel wall.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3