Molecular Mechanisms of Inhibition of Vascular Growth by Angiotensin-(1-7)

Author:

Tallant E. Ann1,Clark Michelle A.1

Affiliation:

1. From the Hypertension and Vascular Disease Center, Wake Forest University School of Medicine, Winston-Salem, NC.

Abstract

Angiotensin (Ang) peptides play a critical role in regulating vascular reactivity and structure. We showed that Ang-(1-7) reduced smooth muscle growth after vascular injury and attenuated the proliferation of vascular smooth muscle cells (VSMCs). This study investigated the molecular mechanisms of the antiproliferative effects of Ang-(1-7) in cultured rat aortic VSMCs. Ang-(1-7) caused a dose-dependent release of prostacyclin from VSMCs, with a maximal release of 277.9±25.2% of basal values ( P <0.05) by 100 nmol/L Ang-(1-7). The cyclooxygenase inhibitor indomethacin significantly attenuated growth inhibition by Ang-(1-7). In contrast, neither a lipoxygenase inhibitor nor a cytochrome p450 epoxygenase inhibitor prevented the antiproliferative effects of Ang-(1-7). These results suggest that Ang-(1-7) inhibits vascular growth by releasing prostacyclin. Ang-(1-7) caused a dose-dependent release of cAMP, which might result from prostacyclin-mediated activation of adenylate cyclase. The cAMP-dependent protein kinase inhibitor Rp-adenosine-3′,5′-cyclic monophosphorothioate attenuated the Ang-(1-7)–mediated inhibition of serum-stimulated thymidine incorporation. Finally, Ang-(1-7) inhibited Ang II stimulation of mitogen-activated protein kinase activities (ERK1/2). Incubation of VSMCs with concentrations of Ang-(1-7) up to 1 μmol/L had no effect on ERK1/2 activation. However, preincubation with increasing concentrations of Ang-(1-7) caused a dose-dependent reduction in Ang II–stimulated ERK1/2 activities. Ang-(1-7) (1 μmol/L) reduced 100 nmol/L Ang II–stimulated ERK1 and ERK2 activation by 42.3±6.2% and 41.2±4.2%, respectively ( P <0.01). These results suggest that Ang-(1-7) inhibits vascular growth through the release of prostacyclin, through the prostacyclin-mediated production of cAMP and activation of cAMP-dependent protein kinase, and by attenuation of mitogen-activated protein kinase activation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Reference47 articles.

Cited by 154 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3