Deficiency of Endothelium-Specific Transcription Factor Sox17 Induces Intracranial Aneurysm

Author:

Lee Seungjoo1,Kim Il-Kug1,Ahn Jae Sung1,Woo Dong-Cheol1,Kim Sang-Tae1,Song Sukhyun1,Koh Gou Young1,Kim Hyung-Seok1,Jeon Byeong Hwa1,Kim Injune1

Affiliation:

1. From Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea (S.L., I.-K.K., S.S., G.Y.K., I.K.); Department of Neurological Surgery, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea (J.S.A.); Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea (D.-C.W., S.-T.K.); Department of Forensic Medicine, Chonnam National University Medical School, Gwangju, Republic of...

Abstract

Background— Intracranial aneurysm (IA) is a common vascular disorder that frequently leads to fatal vascular rupture. Although various acquired risk factors associated with IA have been identified, the hereditary basis of IA remains poorly understood. As a result, genetically modified animals accurately modeling IA and related pathogenesis have been lacking, and subsequent drug development has been delayed. Methods and Results— The transcription factor Sox17 is robustly expressed in endothelial cells of normal intracerebral arteries. The combination of Sox17 deficiency and angiotensin II infusion in mice induces vascular abnormalities closely resembling the cardinal features of IA such as luminal dilation, wall thinning, tortuosity, and subarachnoid hemorrhages. This combination impairs junctional assembly, cell-matrix adhesion, regeneration capacity, and paracrine secretion in endothelial cells of intracerebral arteries, highlighting key endothelial dysfunctions that lead to IA pathogenesis. Moreover, human IA samples showed reduced Sox17 expression and impaired endothelial integrity, further strengthening the applicability of this animal model to clinical settings. Conclusions— Our findings demonstrate that Sox17 deficiency in mouse can induce IA under hypertensive conditions, suggesting Sox17 deficiency as a potential genetic factor for IA formation. The Sox17 -deficient mouse model provides a novel platform to develop therapeutics for incurable IA.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3