A Notch3-Marked Subpopulation of Vascular Smooth Muscle Cells Is the Cell of Origin for Occlusive Pulmonary Vascular Lesions

Author:

Steffes Lea C.12,Froistad Alexis A.34,Andruska Adam4,Boehm Mario45,McGlynn Madeleine34,Zhang Fan2ORCID,Zhang Wenming3,Hou David34,Tian Xuefei4,Miquerol Lucile6ORCID,Nadeau Kari3,Metzger Ross J.4,Spiekerkoetter Edda24,Kumar Maya E.1234ORCID

Affiliation:

1. Division of Pulmonary Medicine, Department of Pediatrics (L.C.S., R.J.M., M.E.K.), Stanford University School of Medicine, CA.

2. Vera Moulton Wall Center for Pulmonary Vascular Research (L.C.S., F.Z., R.J.M., E.S., M.E.K.), Stanford University School of Medicine, CA.

3. Sean N. Parker Center for Asthma and Allergy Research (A.A.F., M.M., W.Z., D.H., K.N., M.E.K.), Stanford University School of Medicine, CA.

4. Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.A.F., A.A., M.B., M.M., D.H., X.T., K.N., E.S., M.E.K.), Stanford University School of Medicine, CA.

5. Universities of Giessen and Marburg Lung Center, Justus-Liebig University Giessen, German Center for Lung Research (M.B.).

6. Aix-Marseille University, Centre Nationale de la Recherche Scientifique (CNRS), Institut de Biologie du Developpement de Marseille, Marseille, France (L.M.).

Abstract

Background: Pulmonary arterial hypertension (PAH) is a fatal disease characterized by profound vascular remodeling in which pulmonary arteries narrow because of medial thickening and occlusion by neointimal lesions, resulting in elevated pulmonary vascular resistance and right heart failure. Therapies targeting the neointima would represent a significant advance in PAH treatment; however, our understanding of the cellular events driving neointima formation, and the molecular pathways that control them, remains limited. Methods: We comprehensively map the stepwise remodeling of pulmonary arteries in a robust, chronic inflammatory mouse model of pulmonary hypertension. This model demonstrates pathological features of the human disease, including increased right ventricular pressures, medial thickening, neointimal lesion formation, elastin breakdown, increased anastomosis within the bronchial circulation, and perivascular inflammation. Using genetic lineage tracing, clonal analysis, multiplexed in situ hybridization, immunostaining, deep confocal imaging, and staged pharmacological inhibition, we define the cell behaviors underlying each stage of vascular remodeling and identify a pathway required for neointima formation. Results: Neointima arises from smooth muscle cells (SMCs) and not endothelium. Medial SMCs proliferate broadly to thicken the media, after which a small number of SMCs are selected to establish the neointima. These neointimal founder cells subsequently undergoing massive clonal expansion to form occlusive neointimal lesions. The normal pulmonary artery SMC population is heterogeneous, and we identify a Notch3-marked minority subset of SMCs as the major neointimal cell of origin. Notch signaling is specifically required for the selection of neointimal founder cells, and Notch inhibition significantly improves pulmonary artery pressure in animals with pulmonary hypertension. Conclusions: This work describes the first nongenetically driven murine model of pulmonary hypertension (PH) that generates robust and diffuse occlusive neointimal lesions across the pulmonary vascular bed and does so in a stereotyped timeframe. We uncover distinct cellular and molecular mechanisms underlying medial thickening and neointima formation and highlight novel transcriptional, behavioral, and pathogenic heterogeneity within pulmonary artery SMCs. In this model, inflammation is sufficient to generate characteristic vascular pathologies and physiological measures of human PAH. We hope that identifying the molecular cues regulating each stage of vascular remodeling will open new avenues for therapeutic advancements in the treatment of PAH.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3