Degradation and Healing Characteristics of Small-Diameter Poly(ε-Caprolactone) Vascular Grafts in the Rat Systemic Arterial Circulation

Author:

Pektok Erman1,Nottelet Benjamin1,Tille Jean-Christophe1,Gurny Robert1,Kalangos Afksendiyos1,Moeller Michael1,Walpoth Beat H.1

Affiliation:

1. From the Departments of Cardiovascular Surgery (E.P., A.K., B.H.W.) and Clinical Pathology (J.-C.T.), University of Hospital of Geneva, Faculty of Medicine, Geneva, and Department of Pharmaceutics and Biopharmaceutics, School of Pharmaceutical Sciences, University of Geneva and University of Lausanne (B.N., R.G., M.M.), Switzerland.

Abstract

Background— Long-term patency of conventional synthetic grafts is unsatisfactory below a 6-mm internal diameter. Poly(ε-caprolactone) (PCL) is a promising biodegradable polymer with a longer degradation time. We aimed to evaluate in vivo healing and degradation characteristics of small-diameter vascular grafts made of PCL nanofibers compared with expanded polytetrafluoroethylene (ePTFE) grafts. Methods and Results— We prepared 2-mm–internal diameter grafts by electrospinning using PCL (M n =80 000 g/mol). Either PCL (n=15) or ePTFE (n=15) grafts were implanted into 30 rats. Rats were followed up for 24 weeks. At the conclusion of the follow-up period, patency and structural integrity were evaluated by digital subtraction angiography. The abdominal aorta, including the graft, was harvested and investigated under light microscopy. Endothelial coverage, neointima formation, and transmural cellular ingrowth were measured by computed histomorphometry. All animals survived until the end of follow-up, and all grafts were patent in both groups. Digital subtraction angiography revealed no stenosis in the PCL group but stenotic lesions in 1 graft at 18 weeks (40%) and in another graft at 24 weeks (50%) in the ePTFE group. None of the grafts showed aneurysmal dilatation. Endothelial coverage was significantly better in the PCL group. Neointimal formation was comparable between the 2 groups. Macrophage and fibroblast ingrowth with extracellular matrix formation and neoangiogenesis were better in the PCL group. After 12 weeks, foci of chondroid metaplasia located in the neointima of PCL grafts were observed in all samples. Conclusions— Small-diameter PCL grafts represent a promising alternative for the future because of their better healing characteristics compared with ePTFE grafts. Faster endothelialization and extracellular matrix formation, accompanied by degradation of graft fibers, seem to be the major advantages. Further evaluation of degradation and graft healing characteristics may potentially lead to the clinical use of such grafts for revascularization procedures.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 305 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3