Evidence for Intramyocardial Disruption of Lipid Metabolism and Increased Myocardial Ketone Utilization in Advanced Human Heart Failure

Author:

Bedi Kenneth C.1,Snyder Nathaniel W.1,Brandimarto Jeffrey1,Aziz Moez1,Mesaros Clementina1,Worth Andrew J.1,Wang Linda L.1,Javaheri Ali1,Blair Ian A.1,Margulies Kenneth B.1,Rame J. Eduardo1

Affiliation:

1. From Cardiovascular Institute University of Pennsylvania Perelman School of Medicine, Smilow Translational Research Center, Philadelphia, PA (K.C.B., J.B., A.J., K.B.M., J.E.R.); A.J. Drexel Autism Institute, Drexel University, Philadelphia, PA (N.W.S.); and Center of Cancer Pharmacology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (M.A., C.M., A.J.W., L.L.W., I.A.B.).

Abstract

Background— The failing human heart is characterized by metabolic abnormalities, but these defects remains incompletely understood. In animal models of heart failure there is a switch from a predominance of fatty acid utilization to the more oxygen-sparing carbohydrate metabolism. Recent studies have reported decreases in myocardial lipid content, but the inclusion of diabetic and nondiabetic patients obscures the distinction of adaptations to metabolic derangements from adaptations to heart failure per se. Methods and Results— We performed both unbiased and targeted myocardial lipid surveys using liquid chromatography-mass spectroscopy in nondiabetic, lean, predominantly nonischemic, advanced heart failure patients at the time of heart transplantation or left ventricular assist device implantation. We identified significantly decreased concentrations of the majority of myocardial lipid intermediates, including long-chain acylcarnitines, the primary subset of energetic lipid substrate for mitochondrial fatty acid oxidation. We report for the first time significantly reduced levels of intermediate and anaplerotic acyl-coenzyme A (CoA) species incorporated into the Krebs cycle, whereas the myocardial concentration of acetyl-CoA was significantly increased in end-stage heart failure. In contrast, we observed an increased abundance of ketogenic β-hydroxybutyryl-CoA, in association with increased myocardial utilization of β-hydroxybutyrate. We observed a significant increase in the expression of the gene encoding succinyl-CoA:3-oxoacid-CoA transferase, the rate-limiting enzyme for myocardial oxidation of β-hydroxybutyrate and acetoacetate. Conclusions— These findings indicate increased ketone utilization in the severely failing human heart independent of diabetes mellitus, and they support the role of ketone bodies as an alternative fuel and myocardial ketone oxidation as a key metabolic adaptation in the failing human heart.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3