Phosphoproteomic Analysis of Neonatal Regenerative Myocardium Revealed Important Roles of Checkpoint Kinase 1 via Activating Mammalian Target of Rapamycin C1/Ribosomal Protein S6 Kinase b-1 Pathway

Author:

Fan Yi1,Cheng Yiwei12,Li Yafei,Chen Bingrui1,Wang Zimu1,Wei Tianwen1,Zhang Hao2,Guo Yueshuai2,Wang Qiming1,Wei Yongyue3,Chen Feng3,Sha Jiahao2,Guo Xuejiang2,Wang Liansheng1ORCID

Affiliation:

1. Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University (Y.F., Y.L., B.C., Z.W., T.W., Q.W., L.W.), Nanjing Medical University, China.

2. State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology (Y.C., H.Z., Y.G., J.S., X.G.), Nanjing Medical University, China.

3. Department of Biostatistics, School of Public Health, China International Cooperation Center for Environment and Human Health (Y.W., F.C.), Nanjing Medical University, China.

Abstract

Background: In mammals, regenerative therapy after myocardial infarction is hampered by the limited regenerative capacity of adult heart, whereas a transient regenerative capacity is maintained in the neonatal heart. Systemic phosphorylation signaling analysis on ischemic neonatal myocardium might be helpful to identify key pathways involved in heart regeneration. Our aim was to define the kinase-substrate network in ischemic neonatal myocardium and to identify key pathways involved in heart regeneration after ischemic insult. Methods: Quantitative phosphoproteomics profiling was performed on infarct border zone of neonatal myocardium, and kinase-substrate network analysis revealed 11 kinases with enriched substrates and upregulated phosphorylation levels, including checkpoint kinase 1 (CHK1) kinase. The effect of CHK1 on cardiac regeneration was tested on Institute of Cancer Research CD1 neonatal and adult mice that underwent apical resection or myocardial infarction. Results: In vitro, CHK1 overexpression promoted whereas CHK1 knockdown blunted cardiomyocyte proliferation. In vivo, inhibition of CHK1 hindered myocardial regeneration on resection border zone in neonatal mice. In adult myocardial infarction mice, CHK1 overexpression on infarct border zone upregulated mammalian target of rapamycin C1/ribosomal protein S6 kinase b-1 pathway, promoted cardiomyocyte proliferation, and improved cardiac function. Inhibiting mammalian target of rapamycin activity by rapamycin blunted the neonatal cardiomyocyte proliferation induced by CHK1 overexpression in vitro. Conclusions: Our study indicates that phosphoproteome of neonatal regenerative myocardium could help identify important signaling pathways involved in myocardial regeneration. CHK1 is found to be a key signaling responsible for neonatal regeneration. Myocardial overexpression of CHK1 could improve cardiac regeneration in adult hearts by activating the mammalian target of rapamycin C1/ribosomal protein S6 kinase b-1 pathway. Thus, CHK1 might serve as a potential novel target in myocardial repair after myocardial infarction.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3