Endothelial Progenitor Cells Restore Renal Function in Chronic Experimental Renovascular Disease

Author:

Chade Alejandro R.1,Zhu Xiangyang1,Lavi Ronit1,Krier James D.1,Pislaru Sorin1,Simari Robert D.1,Napoli Claudio1,Lerman Amir1,Lerman Lilach O.1

Affiliation:

1. From the Department of Internal Medicine (Divisions of Nephrology and Hypertension [A.R.C., X.Z., R.L., J.D.K., L.O.L.] and Cardiovascular Diseases [S.P., R.D.S., A.L., L.O.L.]), Mayo Clinic, Rochester, Minn, and Department of General Pathology and Excellence Research Center of Cardiovascular Diseases, School of Medicine, II University of Naples, Naples, Italy (C.N.). A.R.C. is currently at the Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson. Dr Lavi is...

Abstract

Background— Endothelial progenitor cells (EPCs) promote neovascularization and endothelial repair. Renal artery stenosis (RAS) may impair renal function by inducing intrarenal microvascular injury and remodeling. We investigated whether replenishment with EPCs would protect the renal microcirculation in chronic experimental renovascular disease. Methods and Results— Single-kidney hemodynamics and function were assessed with the use of multidetector computed tomography in vivo in pigs with RAS, pigs with RAS 4 weeks after intrarenal infusion of autologous EPCs, and controls. Renal microvascular remodeling and angiogenic pathways were investigated ex vivo with the use of micro–computed tomography, histology, and Western blotting. EPCs increased renal expression of angiogenic factors, stimulated proliferation and maturation of new vessels, and attenuated renal microvascular remodeling and fibrosis in RAS. Furthermore, EPCs normalized the blunted renal microvascular and filtration function. Conclusions— The present study shows that a single intrarenal infusion of autologous EPCs preserved microvascular architecture and function and decreased microvascular remodeling in experimental chronic RAS. It is likely that restoration of the angiogenic cascade by autologous EPCs involved not only generation of new vessels but also acceleration of their maturation and stabilization. This contributed to preserving the blood supply, hemodynamics, and function of the RAS kidney, supporting EPCs as a promising therapeutic intervention for preserving the kidney in renovascular disease.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3