Intravital Microscopy on Atherosclerosis in Apolipoprotein E–Deficient Mice Establishes Microvessels as Major Entry Pathways for Leukocytes to Advanced Lesions

Author:

Eriksson Einar E.1

Affiliation:

1. From the Department of Molecular Medicine and Surgery, Karolinska Institute, Karolinska Hospital, Stockholm, Sweden.

Abstract

Background— There has been considerable speculation about the role of lesion microvessels in the accumulation of leukocytes in atherosclerosis. However, direct study of microvascular recruitment of leukocytes in lesions has not been performed, and the quantitative role for this route of entry is unclear. Methods and Results— Here, microvascular recruitment of leukocytes was studied in advanced lesions in 12- to 24-month-old apolipoprotein E–deficient (ApoE −/− ) mice. Histology and transmission electron microscopy demonstrated the presence of mainly adventitial, but also intimal, microvessels. Interactions between leukocytes and endothelium occurred in lesion venules. Leukocyte rolling was largely P-selectin dependent; however, residual rolling was mediated by L-selectin and endothelial P-selectin glycoprotein ligand 1. Leukocyte adhesion was significant and was attenuated in mice treated with antibodies against P-selectin, CD18, or both before preparation for intravital microscopy, suggesting acute activation of these 2 molecules by surgical trauma. Nonetheless, the density of firmly arrested leukocytes was 100-fold higher in lesion venules compared with the arterial lumen even in mice pretreated with antibodies against P-selectin and CD18, indicating strong recruitment of cells from venules that is unrelated to experimental manipulation. Fluorescent myelomonocytic cells in ApoE −/− mice carrying a knock-in mutation for enhanced green fluorescent protein (EGFP) in the lysozyme M locus (ApoE −/− /lysM EGFP/EGFP mice) were distributed specifically around lesion venules, but not around arterioles or capillaries, further indicating ongoing extravasation from venules into plaque tissue. Conclusions— These findings provide strong data for microvascular recruitment of leukocytes in atherosclerosis and indicate roles for L-selectin and P-selectin glycoprotein ligand 1 in this process.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3