Glycated Proteins Stimulate Reactive Oxygen Species Production in Cardiac Myocytes

Author:

Zhang Min1,Kho Ay Lin1,Anilkumar Narayana1,Chibber Rakesh1,Pagano Patrick J.1,Shah Ajay M.1,Cave Alison C.1

Affiliation:

1. From King’s College London (M.Z., A.L.K., N.A., R.C., A.M.S., A.C.C.), Cardiovascular Division, London, United Kingdom, and Hypertension and Vascular Research Division (P.J.P.), Henry Ford Hospital, Detroit, Mich.

Abstract

Background— Nonenzymatic glycation that results in the production of early-glycation Amadori-modified proteins and advanced-glycation end products may be important in the pathogenesis of diabetic complications. However, the effects of early-glycated proteins, such as glycated serum albumin (Gly-BSA), are poorly defined. In this study, we investigated the effects of Gly-BSA on reactive oxygen species (ROS) production by cardiomyocytes. Methods and Results— Cultured neonatal rat cardiomyocytes were incubated with Gly-BSA or vehicle (bovine serum albumin [BSA]) for up to 48 hours. Gly-BSA dose-dependently increased in situ ROS production (whole-cell dichlorodihydrofluorescein fluorescence), with an optimum effect at 400 μg/mL after 24-hour incubation (152±10% versus BSA 100%; P <0.01). Treatment with the NADPH oxidase inhibitor apocynin, a Nox2 (gp91phox) antisense oligonucleotide (Nox2 AS), or the peptide gp91ds-tat significantly reduced Gly-BSA–induced ROS production at 24 hours (68.5±2.2%, 61.4±8.3%, and 53.2±5.4% reduction, respectively). NADPH-dependent activity in cell homogenates was also significantly increased by Gly-BSA at 24 hours (161±8% versus BSA) and was inhibited by diphenyleneiodonium, apocynin, NOX2AS, and the protein kinase C inhibitor bisindolylmaleimide I but not by a nitric oxide synthase inhibitor or mitochondrial inhibitors. Furthermore, bisindolylmaleimide I prevented Gly-BSA–stimulated Rac1 translocation, an essential step for NADPH oxidase activation. Gly-BSA–induced increases in ROS were associated with apocynin-inhibitable nuclear translocation of nuclear factor-κB and an increase in atrial natriuretic factor mRNA expression. Conclusions— Gly-BSA stimulates cardiomyocyte ROS production through a protein kinase C–dependent activation of a Nox2-containing NADPH oxidase, which results in nuclear factor-κB activation and upregulation of atrial natriuretic factor mRNA. These findings suggest that early-glycated Amadori products may play a role in the development of diabetic heart disease.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3