Artificial Intelligence–Enabled Assessment of the Heart Rate Corrected QT Interval Using a Mobile Electrocardiogram Device

Author:

Giudicessi John R.1ORCID,Schram Matthew2ORCID,Bos J. Martijn3ORCID,Galloway Conner D.2,Shreibati Jacqueline B.2,Johnson Patrick W.4ORCID,Carter Rickey E.4ORCID,Disrud Levi W.5,Kleiman Robert6,Attia Zachi I.5ORCID,Noseworthy Peter A.5ORCID,Friedman Paul A.5,Albert David E.2,Ackerman Michael J.537ORCID

Affiliation:

1. Clinician-Investigator Training Program (J.R.G.), Mayo Clinic, Rochester, MN.

2. AliveCor Inc., Mountain View, CA. (M.S., C.D.G., J.B.S., D.E.A.).

3. Department of Cardiovascular Medicine; Windland Smith Rice Sudden Death Genomics Laboratory, Department of Molecular Pharmacology and Experimental Therapeutics (J.M.B., M.J.A.), Mayo Clinic, Rochester, MN.

4. Department of Health Sciences Research (Biomedical Statistics and Informatics), Mayo Clinic, Jacksonville, FL (P.W.J., R.E.C.).

5. Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic (L.W.D., Z.I.A., P.A.N., P.A.F., M.J.A.), Mayo Clinic, Rochester, MN.

6. eResearch Technology Inc, Philadelphia, PA (R.K.).

7. Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine (M.J.A.), Mayo Clinic, Rochester, MN.

Abstract

Background: Heart rate–corrected QT interval (QTc) prolongation, whether secondary to drugs, genetics including congenital long QT syndrome, and/or systemic diseases including SARS-CoV-2–mediated coronavirus disease 2019 (COVID-19), can predispose to ventricular arrhythmias and sudden cardiac death. Currently, QTc assessment and monitoring relies largely on 12-lead electrocardiography. As such, we sought to train and validate an artificial intelligence (AI)–enabled 12-lead ECG algorithm to determine the QTc, and then prospectively test this algorithm on tracings acquired from a mobile ECG (mECG) device in a population enriched for repolarization abnormalities. Methods: Using >1.6 million 12-lead ECGs from 538 200 patients, a deep neural network (DNN) was derived (patients for training, n = 250 767; patients for testing, n = 107 920) and validated (n = 179 513 patients) to predict the QTc using cardiologist-overread QTc values as the “gold standard”. The ability of this DNN to detect clinically-relevant QTc prolongation (eg, QTc ≥500 ms) was then tested prospectively on 686 patients with genetic heart disease (50% with long QT syndrome) with QTc values obtained from both a 12-lead ECG and a prototype mECG device equivalent to the commercially-available AliveCor KardiaMobile 6L. Results: In the validation sample, strong agreement was observed between human over-read and DNN-predicted QTc values (−1.76±23.14 ms). Similarly, within the prospective, genetic heart disease–enriched dataset, the difference between DNN-predicted QTc values derived from mECG tracings and those annotated from 12-lead ECGs by a QT expert (−0.45±24.73 ms) and a commercial core ECG laboratory [10.52±25.64 ms] was nominal. When applied to mECG tracings, the DNN’s ability to detect a QTc value ≥500 ms yielded an area under the curve, sensitivity, and specificity of 0.97, 80.0%, and 94.4%, respectively. Conclusions: Using smartphone-enabled electrodes, an AI DNN can predict accurately the QTc of a standard 12-lead ECG. QTc estimation from an AI-enabled mECG device may provide a cost-effective means of screening for both acquired and congenital long QT syndrome in a variety of clinical settings where standard 12-lead electrocardiography is not accessible or cost-effective.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3