Nicotinamide Phosphoribosyltransferase Promotes Pulmonary Vascular Remodeling and Is a Therapeutic Target in Pulmonary Arterial Hypertension

Author:

Chen Jiwang1,Sysol Justin R.1,Singla Sunit1,Zhao Shuangping1,Yamamura Aya1,Valdez-Jasso Daniela1,Abbasi Taimur1,Shioura Krystyna M.1,Sahni Sakshi1,Reddy Vamsi1,Sridhar Arvind1,Gao Hui1,Torres Jaime1,Camp Sara M.1,Tang Haiyang1,Ye Shui Qing1,Comhair Suzy1,Dweik Raed1,Hassoun Paul1,Yuan Jason X.-J.1,Garcia Joe G.N.1,Machado Roberto F.1

Affiliation:

1. From Division of Pulmonary, Critical Care Medicine, Sleep and Allergy, Department of Medicine (J.C., J.R.S., S.S., S.Z., A.Y., T.A., K.M.S., S.S., V.R., A.S., H.G., J.T., R.F.M.), Department of Pharmacology (J.R.S., R.F.M.), and Department of Bioengineering (A.V.-J., T.A.), University of Illinois at Chicago; Institute of Precision Medicine, Jining Medical University, China (J.C.); Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan (A.Y.); Department of Medicine,...

Abstract

Background: Pulmonary arterial hypertension is a severe and progressive disease, a hallmark of which is pulmonary vascular remodeling. Nicotinamide phosphoribosyltransferase (NAMPT) is a cytozyme that regulates intracellular nicotinamide adenine dinucleotide levels and cellular redox state, regulates histone deacetylases, promotes cell proliferation, and inhibits apoptosis. We hypothesized that NAMPT promotes pulmonary vascular remodeling and that inhibition of NAMPT could attenuate pulmonary hypertension. Methods: Plasma, mRNA, and protein levels of NAMPT were measured in the lungs and isolated pulmonary artery endothelial cells from patients with pulmonary arterial hypertension and in the lungs of rodent models of pulmonary hypertension. Nampt +/− mice were exposed to 10% hypoxia and room air for 4 weeks, and the preventive and therapeutic effects of NAMPT inhibition were tested in the monocrotaline and Sugen hypoxia models of pulmonary hypertension. The effects of NAMPT activity on proliferation, migration, apoptosis, and calcium signaling were tested in human pulmonary artery smooth muscle cells. Results: Plasma and mRNA and protein levels of NAMPT were increased in the lungs and isolated pulmonary artery endothelial cells from patients with pulmonary arterial hypertension, as well as in lungs of rodent models of pulmonary hypertension. Nampt +/− mice were protected from hypoxia-mediated pulmonary hypertension. NAMPT activity promoted human pulmonary artery smooth muscle cell proliferation via a paracrine effect. In addition, recombinant NAMPT stimulated human pulmonary artery smooth muscle cell proliferation via enhancement of store-operated calcium entry by enhancing expression of Orai2 and STIM2. Last, inhibition of NAMPT activity attenuated monocrotaline and Sugen hypoxia–induced pulmonary hypertension in rats. Conclusions: Our data provide evidence that NAMPT plays a role in pulmonary vascular remodeling and that its inhibition could be a potential therapeutic target for pulmonary arterial hypertension.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3