Cellular origins of the transient inward current in cardiac myocytes. Role of fluctuations and waves of elevated intracellular calcium.

Author:

Berlin J R1,Cannell M B1,Lederer W J1

Affiliation:

1. Department of Physiology, University of Maryland School of Medicine, Baltimore 21201.

Abstract

Activation of the transient inward current (ITI) by a rise in intracellular calcium concentration ([Ca2+]i) is believed to be responsible for generating triggered cardiac arrhythmias. In this study, the cellular basis of the rise in [Ca2+]i that activates ITI and aftercontractions in single rat ventricular myocytes was examined. [Ca2+]i was measured both indirectly by cell contraction and directly with fura-2. Under conditions that caused steady-state [Ca2+]i to increase (i.e., calcium overload) membrane repolarization after a voltage-clamp depolarization resulted in the appearance of ITI that was similar in many respects to that observed in multicellular preparations. This ITI occurred at the same time that [Ca2+]i spontaneously increased and preceded the aftercontraction by 60-90 msec. However, ITI recorded from a single cell was variable in time course and amplitude (unlike that observed in multicellular preparations). Examination of cell contraction and digital imaging of fura-2 fluorescence showed that ITI was often associated with propagating regions of increased [Ca2+]i, which arose from discrete sites of origin within the cell. Apparently synchronous aftercontractions could also be associated with multiple propagating waves of [Ca2+]i. The variation in the time course and amplitude of ITI in single cells appeared to be due to changes in the location and number of sites of origin for the waves of [Ca2+]i. After the first aftercontraction and ITI, desynchronization of the sites of origin of increased [Ca2+]i occurred, and this resulted in a decrease in the amplitude of ITI and an increase in its duration. We conclude that the variability seen in single cells arises from changes in the pattern of spontaneous Ca2+ release. Such phenomena will seriously complicate interpretation of multicellular data, even when [Ca2+]i is measured directly.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 227 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3