Granulocytes and no-reflow phenomenon in irreversible hemorrhagic shock.

Author:

Barroso-Aranda J1,Schmid-Schönbein G W1,Zweifach B W1,Engler R L1

Affiliation:

1. AMES-Bioengineering, University of California, San Diego, La Jolla 92093.

Abstract

Recent evidence shows that circulating granulocytes play an important role in capillary stasis and tissue injury. We investigated two aspects of the problem in a Wiggers hemorrhagic shock model of the rat: the survival rate and the microvascular no-reflow phenomenon. A conventional group of rats with normal blood cells and a neutropenic group of rats pretreated with intraperitoneal antigranulocyte antibody were used to evaluate the effects of granulocytes. Two hemorrhagic shock protocols (HSP) were carried out. In HSP-1, the rats were subjected to 40 mm Hg mean arterial pressure for 3 hours. The conventional group (n = 11) showed a 36% survival rate compared with 100% in the neutropenic group (n = 6). In HSP-2, the hypotension was more severe, 30 mm Hg mean arterial pressure for 7 hours. There were no survivors in the conventional group (n = 8), compared with a 100% survival rate in the neutropenic group (n = 6). The extent, location, and mechanism of the no-reflow phenomenon was investigated by examining histological sections from several organs after infusion of a contrast medium to mark vessels with flow in a control group without shock and in the HSP-2 model 2 hours after blood replacement. The arterioles and venules uniformly contained contrast medium in all three groups; only capillaries showed no-reflow. A significantly higher percentage of no-reflow was observed in the capillaries of the conventional shock group than in the neutropenic shock group. We concluded that the obstruction of capillaries was largely due to trapped granulocytes, suggesting that these leukocytes play a key role in the capillary no-reflow phenomenon and survival from hemorrhagic shock.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference28 articles.

1. The interplay of central and peripheral factors in irreversible hemorrhagic shock

2. Microvascular adjustments during irreversible hemorrhagic shock in rat skeletal muscle

3. Deformation of white blood cells in capillaries;Bagge U;Adv Microcirc (Karger-Basel),1977

4. Vascular endothelium-leukocyte interaction sticking shear force in venules;Schmid-Schonbein GW;Circ Res,1975

5. MacGregor RR: Granulocyte adherence in Glynn LE Houck JC Weissmann G (eds): The Cell Biology of Inflammation. Handbook of Inflammation vol 2. Amsterdam Elsevier North-Holland Biomedical Press 1980 pp 267-298

Cited by 200 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3