Rescue of Monocrotaline-Induced Pulmonary Arterial Hypertension Using Bone Marrow–Derived Endothelial-Like Progenitor Cells

Author:

Zhao Yidan D.1,Courtman David W.1,Deng Yupu1,Kugathasan Lakshmi1,Zhang Qiuwang1,Stewart Duncan J.1

Affiliation:

1. From the Terrence Donnelly Vascular Biology Laboratories, St Michael’s Hospital and the McLaughlin Center for Molecular Medicine, University of Toronto, Canada.

Abstract

Pulmonary arterial hypertension (PAH) is characterized by a progressive increase in pulmonary vascular resistance caused by narrowing and loss of pulmonary microvasculature, which in its late stages becomes refractory to traditional therapies. We hypothesized that bone marrow–derived endothelial progenitor cells (EPCs), which normally function to repair and regenerate blood vessels, would restore pulmonary hemodynamics and increase microvascular perfusion in the rat monocrotaline (MCT) model of PAH. Mononuclear cells were isolated from the bone marrow of syngeneic Fisher-344 rats by Ficoll gradient centrifugation and cultured for 7 to 10 days in endothelial growth medium. Fluorescently labeled endothelial-like progenitor cells (ELPCs) engrafted at the level of the distal pulmonary arterioles and incorporated into the endothelial lining in the MCT-injured lung. The administration of ELPCs 3 days after MCT nearly completely prevented the increase in right ventricular systolic pressure seen at 3 weeks with MCT alone (31.5±0.95 versus 48±3 mm Hg, respectively; P <0.001), whereas injection of skin fibroblasts had no protective effect (50.9±5.4 mm Hg). Delayed administration of progenitor cells 3 weeks after MCT prevented the further progression of PAH 2 weeks later (ie, 5 weeks after MCT), whereas only animals receiving ELPCs transduced with human endothelial NO-synthase (eNOS) exhibited significant reversal of established disease at day 35 (31±2 mm Hg, P <0.005) compared with day 21 (50±3 mm Hg). Fluorescent microangiography revealed widespread occlusion of pulmonary precapillary arterioles 3 weeks after MCT, whereas arteriolar-capillary continuity and microvascular architecture was preserved with the administration of syngeneic ELPCs. Moreover, the delivery of ELPCs to rats with established PAH resulted in marked improvement in survival, which was greatest in the group receiving eNOS-transduced cells. We conclude that bone marrow–derived ELPCs can engraft and repair the MCT-damaged lung, restoring microvasculature structure and function. Therefore, the regeneration of lung vascular endothelium by injection of progenitor cells may represent a novel treatment paradigm for patients with PAH.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 396 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3