Vascular Cell Senescence

Author:

Minamino Tohru1,Komuro Issei1

Affiliation:

1. From the Department of Cardiovascular Science and Medicine, Chiba University Graduate School of Medicine, Japan.

Abstract

Cardiologists and most physicians believe that aging is an independent risk factor for human atherosclerosis, whereas atherosclerosis is thought to be a characteristic feature of aging in humans by many gerontologists. Because atherosclerosis is among the age-associated changes that almost always escape the influence of natural selection in humans, it might be reasonable to regard atherosclerosis as a feature of aging. Accordingly, when we investigate the pathogenesis of human atherosclerosis, it may be more important to answer the question of how we age than what specifically promotes atherosclerosis. Recently, genetic analyses using various animal models have identified molecules that are crucial for aging. These include components of the DNA-repair system, the tumor suppressor pathway, the telomere maintenance system, the insulin/Akt pathway, and other metabolic pathways. Interestingly, most of the molecules that influence the phenotypic changes of aging also regulate cellular senescence, suggesting a causative link between cellular senescence and aging. For example, DNA-repair defects can cause phenotypic changes that resemble premature aging, and senescent cells that show DNA damage accumulate in the elderly. Excessive calorie intake can cause diabetes and hyperinsulinemia, whereas dysregulation of the insulin pathway has been shown to induce cellular senescence in vitro. Calorie restriction or a reduction of insulin signals extends the lifespan of various species and decreases biomarkers of cellular senescence in vivo. There is emerging evidence that cellular senescence contributes to the pathogenesis of human atherosclerosis. Senescent vascular cells accumulate in human atheroma tissues and exhibit various features of dysfunction. In this review, we examine the hypothesis that cellular senescence might contribute to atherosclerosis, which is a characteristic of aging in humans.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 454 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3