Inflammatory Responses in the Cerebral Cortex After Ischemia in the P7 Neonatal Rat

Author:

Benjelloun N.1,Renolleau S.1,Represa A.1,Ben-Ari Y.1,Charriaut-Marlangue C.1

Affiliation:

1. From the Université René Descartes, Paris, France.

Abstract

Background and Purpose —The contribution of inflammatory response to the pathogenesis of ischemic lesions in the neonate is still uncertain. This study described the chronological sequence of inflammatory changes that follow cerebral ischemia with reperfusion in the neonatal P7 rat. Methods —P7 rats underwent left middle cerebral artery electrocoagulation associated with 1-hour left common carotid artery occlusion. The spatiotemporal pattern of cellular responses was characterized immunocytochemically with the use of antibodies against rat endogenous immunoglobulins to visualize the area of the breakdown of the blood-brain barrier. Infiltration of neutrophils and T lymphocytes was demonstrated by antibodies against myeloperoxidase and a pan-T cell marker, respectively. Antibodies ED1 and OX-42 were applied to identify microglial cells and macrophages. The response of astrocytes was shown with antibodies against glial fibrillary acidic protein. Cell survival was assessed by Bcl-2 expression. Cell death was demonstrated by DNA fragmentation with the use of the terminal deoxynucleotidyl transferase–mediated dUTP biotin nick end labeling (TUNEL) assay and Bax immunodetection. Results —Endogenous immunoglobulin extravasation through the blood-brain barrier occurred at 2 hours of recirculation and persisted until 1 month after ischemia. Neutrophil infiltration began at 24 hours and peaked at 72 to 96 hours (30±3.4 neutrophils per 0.3 mm 2 ; P <0.0001), then disappeared at 14 days after ischemia. T cells were observed between 24 and 96 hours of reperfusion. Resident microglia-macrophages exhibited morphological remnants and expressed the cell death inhibitor Bcl-2 at 24 hours of recirculation. They became numerous within the next 48 hours and peaked at 7 days after ischemia. Phenotypic changes of resident astrocytes were apparent at 24 hours, and they proliferated between 48 hours and 7 days after ischemia. Progressively inflammatory cells showed DNA fragmentation and the cell death activator Bax expression. Cell elimination continued until there was a complete disappearance of the frontoparietal cortex. Conclusions —These data demonstrate that perinatal ischemia with reperfusion triggers acute inflammatory responses with granulocytic cell infiltration, which may be involved in accelerating the destructive processes.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3