Spinal Cord Ischemia

Author:

Lang-Lazdunski Loic1,Matsushita Kohji1,Hirt Lorenz1,Waeber Christian1,Vonsattel Jean-Paul G.1,Moskowitz Michael A.1

Affiliation:

1. From the Stroke and Neurovascular Regulation Laboratory, Department of Neurology and Neurosurgery (L.L-L., K.M., L.H., C.W., M.A.M.), and Laboratory for Molecular Neuropathology (J-P.G.V.), Neuroscience Center, Massachusetts General Hospital, Harvard Medical School, Charlestown. Drs Lang-Lazdunski and Matsushita contributed equally to this work.

Abstract

Background and Purpose —Spinal cord ischemia with resulting paraplegia is a devastating complication of thoracoabdominal aortic surgery. Experimental models of spinal cord ischemia have been developed in primate, dog, pig, rabbit, and rat with variable reproducibility, but none has been developed in mouse. Because genetically engineered mice have become important to examine the impact of specific genes in ischemic pathophysiology, we sought to develop a reproducible mouse model of spinal cord ischemia. Methods —C57BL/6NCrlBR mice were subjected to cross-clamping of the aortic arch, left subclavian artery, and internal mammary artery for 9 minutes (group A; n=8) or 11 minutes (group B; n=29) followed by reperfusion for 24 or 48 hours. Mean distal arterial blood pressure (left femoral artery) and lumbar (L1) spinal cord blood flow (laser-Doppler flowmetry) were measured for the duration of the procedure. The arterial blood supply of the spinal cord was visualized by intravascular perfusion of carbon black ink. We evaluated motor function in the hind limbs at 0, 1, 3, 6, and 24 hours after reperfusion using a rating scale of 0 (normal function) to 6 (total absence of movement). Spinal cord histopathology was evaluated after 24 and 48 hours of reperfusion by Luxol fast blue–hematoxylin and eosin. Results —The vascular anatomy of the mouse and human spinal cord appeared similar in that blood was supplied by 1 anterior and 2 posterior spinal arteries and heterosegmental radicular arteries. During combined occlusion of aortic arch and left subclavian artery, mean distal arterial blood pressure dropped to 10±5 mm Hg, and spinal cord blood flow at the L1 level decreased to 27±7% of baseline. All animals recovered from anesthesia with acute paraplegia. Animals in the 9-minute group (group A) showed steady recovery of hind limb function over the ensuing 24 hours, whereas the majority (80%) in the 11-minute group (group B) remained paralyzed with maximum deficit throughout the postoperative period. Mortality was 0% and 21% in groups A and B, respectively. Maximal ischemic damage was observed at the lower thoracic and higher lumbar spinal levels in both groups. In group A (9 minutes), tissue damage was mild, affecting predominantly dorsal horns and intermediate gray matter, whereas ventral horns were minimally involved. All mice in group B (11 minutes) showed extensive gray matter lesions particularly involving dorsal horns and intermediate areas; in ventral horns, >50% of motor neurons died. White matter lesions were present in the most severely damaged cords only. Conclusions —Spinal cord ischemia caused by aortic arch plus left subclavian artery cross-clamping provides a mouse model useful for the study of spinal cord injury and of potential relevance to the complications following thoracoabdominal aortic surgery in humans.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3