Dysregulated Expression of RPS4Y1 (Ribosomal Protein S4, Y-Linked 1) Impairs STAT3 (Signal Transducer and Activator of Transcription 3) Signaling to Suppress Trophoblast Cell Migration and Invasion in Preeclampsia

Author:

Chen Xuehai1,Tong Chao1,Li Haiying1,Peng Wei1,Li Rong1,Luo Xin1,Ge Huisheng1,Ran Yuxin1,Li Qin1,Liu Yamin1,Xiong Xi1,Bai Yuxiang1,Zhang Hua1,Baker Philip N.1,Liu Xiru1,Qi Hongbo1

Affiliation:

1. From the Department of Obstetrics and Gynecology and Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, First Affiliated Hospital of Chongqing Medical University, China (X.C., C.T., H.L., W.P., R.L., X.L., H.G., Y.R., Q.L., Y.L., X.X., Y.B., H.Z., X.L., H.Q.); and College of Medicine, Biological Sciences and Psychology, University of Leicester, United Kingdom (P.N.B.).

Abstract

Normal placentation and a successful pregnancy depend on appropriate trophoblast cell migration and invasion. Inadequate trophoblast invasion and impaired spiral artery remodeling may lead to pregnancy-related disorders, such as preeclampsia. RPS4Y1 (ribosomal protein S4, Y-linked 1) is a member of the S4E family of ribosomal proteins. In this study, we found that RPS4Y1 levels were upregulated in placental samples collected from preeclamptic patients, when compared with the normotensive pregnant women. In vitro, inhibition of RPS4Y1 induced trophoblast cell invasion, promoted placental explant outgrowth, and increased STAT3 (signal transducer and activator of transcription 3) phosphorylation along with elevated expression of N-cadherin and vimentin. Conversely, overexpression of RPS4Y1 results in reduced trophoblast cell invasion and decreased STAT3 phosphorylation. In addition, the suppression of RPS4Y1 promotes trophoblast cell invasion, which could be abolished by the STAT3 knockdown. Meanwhile, we observed reductions of STAT3 phosphorylation expression in preeclampsia patients. Collectively, these results demonstrate that the level of RPS4Y1 expression may be associated with preeclampsia by affecting trophoblast cell migration and invasion via the STAT3/epithelial–mesenchymal transition pathway.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3