Indoleamine 2,3-Dioxygenase 1 Deletion-Mediated Kynurenine Insufficiency Inhibits Pathological Cardiac Hypertrophy

Author:

Wang Yinhui1ORCID,Song Jia2,Yu Kun1,Nie Daan34ORCID,Zhao Chengcheng1ORCID,Jiao Liping5,Wang Ziyi1,Zhou Ling1,Wang Feng1,Yu Qilin6ORCID,Zhang Shu6ORCID,Wen Zheng1ORCID,Wu Junfang1ORCID,Wang Cong-Yi6,Wang Dao Wen1ORCID,Cheng Jia1ORCID,Zhao Chunxia1ORCID

Affiliation:

1. Department of Internal Medicine, Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.W., K.Y., Chengcheng Zhao, Z. Wang, L.Z., F.W., Z. Wen, J.W., D.W.W., J.C., Chunxia Zhao).

2. Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.S.).

3. Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (D.N.).

4. Department of Cardiovascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China (D.N.).

5. Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China (L.J.).

6. The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Q.Y., S.Z., C.-Y.W.).

Abstract

BACKGROUND: Aberrant amino acid metabolism is implicated in cardiac hypertrophy, while the involvement of tryptophan metabolism in pathological cardiac hypertrophy remains elusive. Herein, we aimed to investigate the effect and potential mechanism of IDO1 (indoleamine 2,3-dioxygenase) and its metabolite kynurenine (Kyn) on pathological cardiac hypertrophy. METHODS: Transverse aortic constriction was performed to induce cardiac hypertrophy in IDO1-knockout (KO) mice and AAV9-cTNT-shIDO1 mice. Liquid chromatography–mass spectrometry was used to detect the metabolites of tryptophan-Kyn pathway. Chromatin immunoprecipitation assay and dual luciferase assay were used to validate the binding of protein and DNA. RESULTS: IDO1 expression was upregulated in both human and murine hypertrophic myocardium, alongside with increased IDO1 activity and Kyn content in transverse aortic constriction-induced mice’s hearts using liquid chromatography–mass spectrometry analysis. Myocardial remodeling and heart function were significantly improved in transverse aortic constriction-induced IDO1-KO mice, but were greatly exacerbated with subcutaneous Kyn administration. IDO1 inhibition or Kyn addition confirmed the alleviation or aggravation of hypertrophy in cardiomyocyte treated with isoprenaline, respectively. Mechanistically, IDO1 and metabolite Kyn contributed to pathological hypertrophy via the AhR (aryl hydrocarbon receptor)-GATA4 (GATA binding protein 4) axis. CONCLUSIONS: This study demonstrated that IDO1 deficiency and consequent Kyn insufficiency can protect against pathological cardiac hypertrophy by decreasing GATA4 expression in an AhR-dependent manner.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3