Oxytocin Pathways Mediate the Cardiovascular and Behavioral Responses to Substance P in the Rat Brain

Author:

Maier Tanja1,Dai Wen-Jie1,Csikós Tamás1,Jirikowski Gustav F.1,Unger Thomas1,Culman Juraj1

Affiliation:

1. From the Institute of Pharmacology, Christian-Albrechts University of Kiel, Kiel, Germany (T.M., W.-J.D., T.C., T.U., J.C.) and the Institute of Anatomy II, Friedrich-Schiller University of Jena, Jena, Germany (G.F.J.).

Abstract

Stimulation of brain periventricular and hypothalamic substance P receptors induces a pressor response and tachycardia associated with mesenteric and renal vasoconstriction and hindlimb vasodilation resembling thus the classical defense reaction. This cardiovascular response is brought about by the activation of the sympathoadrenal system and is accompanied by grooming behavior. To address the role of oxytocinergic pathways in the brain in the mediation of these responses, we investigated the effects of central pretreatment of rats with oxytocin antisense, mixed base, and sense oligodeoxynucleotides on mean arterial pressure, heart rate, and grooming behavior induced by intracerebroventricular injections of substance P (50 pmol). Central pretreatment of conscious rats with the oxytocin antisense oligodeoxynucleotide (intracerebroventricular injections, 8 and 4 hours before administration of substance P) attenuated the mean arterial pressure (by 55%) and heart rate responses (by 58%) as well as grooming behavior induced by the peptide. A complete recovery of all substance P-induced responses was observed 28 hours after antisense oligodeoxynucleotide pretreatment. Intracerebroventricular pretreatment of rats with mixed base and sense oligodeoxynucleotides did not affect the cardiovascular and behavioral responses to substance P. The signal for oxytocin mRNA in the paraventricular nucleus was reduced only in rats pretreated with the antisense oligodeoxynucleotide. These results demonstrate that oxytocin neurons in the paraventricular nucleus, which innervate the cardiovascular centers in the hindbrain and the spinal cord, mediate the increases in blood pressure and heart rate induced by stimulation of substance P receptors in the forebrain. These neurons may also transmit signals, which are generated by substance P in the hypothalamus and are responsible for the sympathoadrenal activation in response to stress.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3