Estradiol Metabolites Inhibit Endothelin Synthesis by an Estrogen Receptor-Independent Mechanism

Author:

Dubey Raghvendra K.1,Jackson Edwin K.1,Keller Paul J.1,Imthurn Bruno1,Rosselli Marinella1

Affiliation:

1. From the Department of Obstetrics and Gynecology (R.K.D., P.J.K., B.I., M.R.), Clinic for Endocrinology, University Hospital, Zurich, Switzerland, and Departments of Medicine (R.K.D., E.K.J.), and Pharmacology (E.K.J.) Center for Clinical Pharmacology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.

Abstract

Estradiol inhibits endothelin-1 synthesis, an effect that may contribute to the cardiovascular protective effects of estradiol. Recent findings that estradiol inhibits neointima formation in mice lacking estrogen receptors suggests that the cardiovascular protective effects of estradiol may be mediated by means of an estrogen receptor-independent mechanism. Because 2-hydroxyestradiol and 2-methoxyestradiol, metabolites of estradiol with little/no affinity for estrogen receptors, are more potent than estradiol in inhibiting vascular smooth muscle cell growth, we investigated whether these metabolites also inhibit endothelin-1 synthesis by means of an receptor-independent mechanism. Treatment of porcine coronary artery endothelial cells for 4 to 24 hours with 0.001 to 1 μmol/L of estradiol, 2-hydroxyestradiol, or 2-methoxyestradiol concentration-dependently inhibited basal as well as serum-induced (2.5%), TNFα-induced (10 ng/mL), angiotensin II–induced (100 nmol/L), and thrombin-induced (4 U/mL) endothelin-1 synthesis. Estradiol, 2-hydroxyestradiol, and 2-methoxyestradiol also inhibited serum-induced mitogen-activated protein kinase activity. As compared with estradiol, its metabolites were more potent in inhibiting endothelin-1 secretion and mitogen activated protein kinase activity. The inhibitory effects of 2-hydroxyestradiol and 2-methoxyestradiol on endothelin-1 release and mitogen-activated protein kinase activity were not blocked by ICI182780 (50 μmol/L), an estrogen receptor antagonist. Our findings indicate that the estradiol metabolites 2-hydroxyestradiol and 2-methoxyestradiol potently inhibit endothelin-1 synthesis by means of an estrogen receptor-independent mechanism. This effect of estradiol metabolites may be mediated by inhibition of mitogen activated protein kinase activity and may contribute to the cardioprotective effects of estradiol.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 122 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3