Stimulating Circle of Willis Nerve Fibers Preserves the Diffusion-Perfusion Mismatch in Experimental Stroke

Author:

Henninger Nils1,Fisher Marc1

Affiliation:

1. From the Departments of Internal Medicine (N.H.) and Neurology (N.H., M.F.), University of Massachusetts Medical School, Worcester.

Abstract

Background and Purpose— Stimulation of the nerves traversing the ethmoidal foramen (including postsynaptic, parasympathetic projections from the sphenopalatine ganglion [SPG], henceforth referred to as “SPG-stimulation”) has been shown to elevate cerebral blood flow (CBF) and to be neuroprotective after permanent, middle cerebral artery occlusion (pMCAO). Methods— Employing diffusion (DWI)- and perfusion (PWI) weighted MRI, the effect of SPG-stimulation (started at 60 minutes post-MCAO) on the spatiotemporal evolution of ischemia during and after pMCAO was investigated. In an additional experiment, regional CBF changes were investigated in the nonischemic brain. Results— In the nonischemic brain, SPG stimulation significantly elevated CBF predominantly within areas supplied by the anterior cerebral artery (by 0.64 mL/g/min relative to baseline). In the ischemic brain, CBF only marginally increased within the penumbra and core (by up to 0.08 and 0.15 mL/g/min relative to prestimulation, respectively). However, the threshold-derived CBF lesion volume did not change significantly. Penumbral apparent diffusion coefficient (ADC)-values improved to almost baseline values and the threshold derived ADC/CBF-mismatch was preserved up to 180 minutes after MCAO. TTC-derived lesion volumes were significantly smaller in stimulated versus nonstimulated animals (120.4±74.1 mm 3 versus 239.3±68.5 mm 3 , respectively). Conclusion— This study demonstrates that unilateral SPG-stimulation increases CBF bilaterally within the normal brain, acutely preserves the CBF/ADC mismatch largely independent of altering cerebral blood flow, and reduces infarct size in the rat permanent suture model.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3